
Pneumonia in Children

Dr Montaha AL-Iede, MD, DCH, FRAC

Pediatric Pulmonologist & Sleep physician

Objectives of the lecture

- Pneumonia in children
 - Clinical presentation
 - Diagnosis
 - -Management

What is pneumonia ??

- □ Pneumonia is an acute infection of the pulmonary parenchyma.
- The term "Lower Respiratory Tract Infection" (LRTI) may include pneumonia, bronchiolitis and / or bronchitis.
- Bronchopneumonia: a patchy consolidation involving one or more lobes, usually involves the dependent lung zones (basal).
- Interstitial pneumonia : patchy or diffuse inflammation involving the interstitium is characterized by infiltration of lymphocytes and macrophages.
- **Congenital pneumonia**, presents within the first 24 hours after birth.

According to WHO

- Pneumonia accounts for 14% of all deaths of children under 5 years old, killing 740 180 children in 2019.
- Pneumonia can be prevented by immunization, adequate nutrition, and by addressing environmental factors such as indoor air pollution, parental smoking and living in crowded homes.

□ <u>Classifications:</u>

✓ Anatomical :

lobar or lobular, bronchopneumonia and interstitial pneumonia.

✓ <u>Etiology:</u>

Viral or Bacterial

Lobar Pneumonia

- Affecting one or more lobes, or part of a lobe of the lung.
- Bronchi not primarily affected and remain air filled -> air bronchograms; generally no volume loss
- Less common due to early treatment
- DDx: Aspiration and Pulmonary Embolus

Lobar Pneumonia

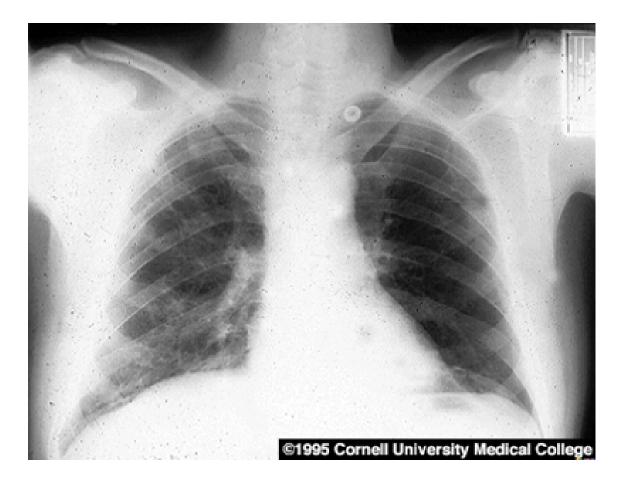
Pathogens

S. pneumoniae

Others S. aureus H. influenzae Fungal

Round Pneumonia

S. pneumoniae Klebsiella Any pneumonia in children Atypical Measles


Bronchopneumonia

Primarily affects bronchi and adjacent alveoli -> multifocal patchy opacities

Volume loss may be present as bronchi filled with exudate

Mycoplasma

Among the most common lower respiratory infections worldwide.

Ages 5-20 yrs

Gradual onset of headache, malaise, fever, sore throat, and cough

Viral: RSV, Influenza, parainfluanza or adenovirus.....

Bacterial:

- 1st 2 months: the common agents include: <u>klebsiella, E. Coli</u> and staphylococci.
- *3months- 3 years: Spneumonia, H influenza and staphylococci.*
- After 3 years: common bacteria include <u>S pneumonia and</u> <u>staphylococci.</u>
- Atypical organism: <u>Chlamydia sps and Mycoplasma</u>.
- *Pneumuocystis carinii*: causes pneumonia in immunocompromized children.

Clinical Features:

- **Onset:** May be insidious starting with URTI or may be acute with high fever, dyspnea and respiratory distress.
- Can present with acute abdominal pain, referred from the pleura.
- **O/E:** signs of respiratory distress:

Flaring of alae nasi retraction of lower chest and intercostal spaces.

Signs of Respiratory Distress

1.Tachypnea, respiratory rate, breaths/min (WHO definition)

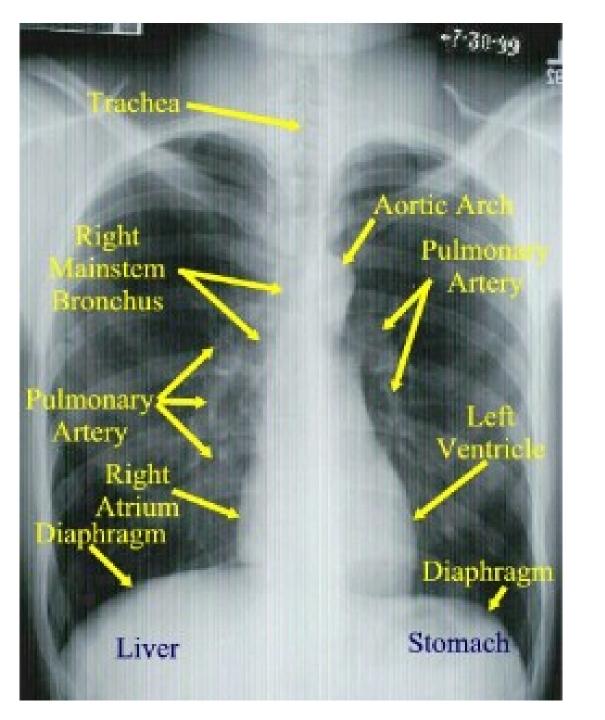
Age 0–2 months: >60

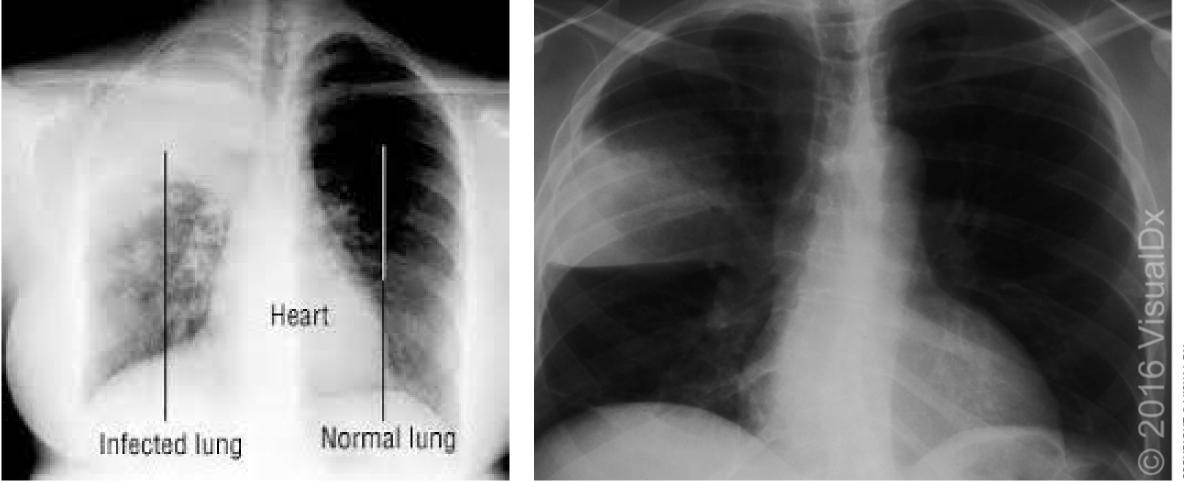
Age 2–12 months: >50

Age 1–5 Years: >40

Age >5 Years: >20

- 2. Dyspnea
- 3. Retractions (suprasternal, intercostals, or subcostal)
- 4. Grunting
- 5. Nasal flaring
- 6. Apnea
- 7. Altered mental status
- 8. Pulse oximetry measurement ,90% on room air




 Signs of consolidation: bronchial breathing Increased tactile vocal fremitus dull percussion note.

Diagnosis:

- **CXR:** confirms the diagnosis and may indicate a complication such as pleural effusion or empyema.
- Viral pneumonia: hyperinflation with bilateral interstitial infiltrates and peribronchial cuffing.
- Pneumococcal pneumonia: confluent lobar consolidation.
- **Staphyloccoci:** Cause pneumatocele as well.

1	Body site	Specimen	Diagnostic method
Upper respiratory tract	Upper respiratory tract	Pharyngeal swab Nasopharyngeal swab/secretion	PCR Antigen detection assay
Lower respiratory tract	Lower respiratory tract	Sputum Tracheal aspirate Bronchoalveolar lavage (BAL) Lung biopsy Pleural fluid	Gram stain Culture PCR Antigen detection assay
	Blood	Whole blood Serum	Culture PCR ELISA ASC ELISpot assay*
	Urine	Native urine	Antigen detection assay

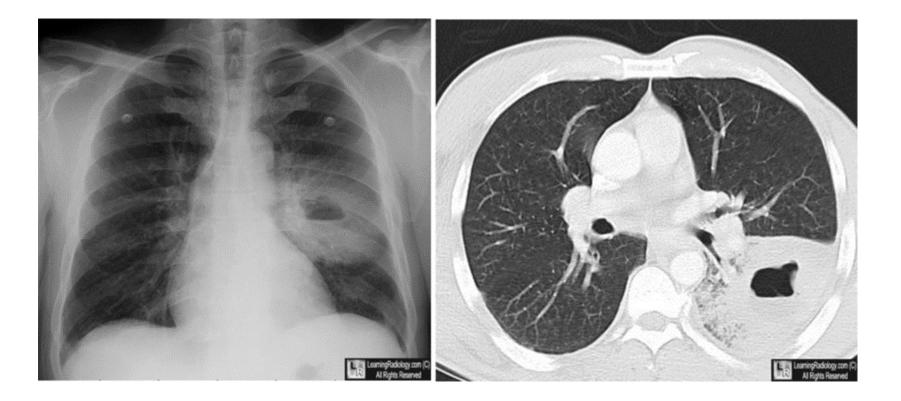
COPYRIGHT © VISUAL DX

Bloods:

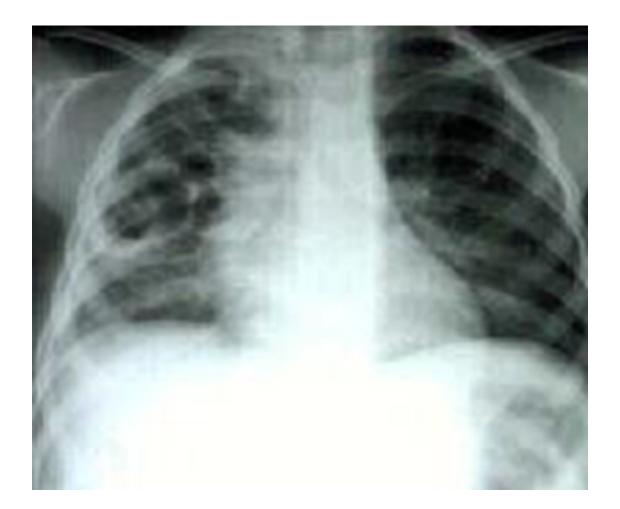
- **Peripheral WBC count**: differentiates viral from bacterial.
- <u>Viral pneumonia</u>: WBC count can be NL or elevated but not higher than 20.000 with lymphocytosis.
- <u>Bacterial pneumonia</u>: is often associated with an elevated WBC count 15,000 40,000 with neutrophilia.

- **Blood CX:** should not be routinely performed in nontoxic, fully immunized children.
- should be obtained in children who fail to demonstrate clinical improvement and in those who have progressive symptoms or clinical deterioration after initiation of antibiotic therapy
- CRP and ESR

- Viral culture, PCR or antigen isolation in respiratory secretion (NPA).
- Bacterial: sputum culture , ?? Value in children.
- Mycoplasma: IgM titers.


Complications Associated With Pneumonia

Site	Complication	Pathogens ^a	
Local	Pleural effusion or empyema (~ 1%)	Streptococcus pneumoniae	
		Streptococcus pyogenes	
		Staphylococcus aureus	
	Necrotizing pneumonia, ^b	Streptococcus pneumoniae Staphylococcus aureus	
	Pneumatocele ^b		
	Lung abscess ^b	Staphylococcus aureus	
		Anaerobes	
Systemic	Bacteraemia, sepsis	Streptococcus pneumoniae	
(extra-pulmonary)	(~1%) ^c	Streptococcus pyogenes	
		Staphylococcus aureus	
	Rash, urticaria,	Mycoplasma pneumoniae	
	mucositis (MIRM) ^d		
	Haemolytic uraemic syndrome (HUS) ^b	Streptococcus pneumoniae	
	Neurological symptoms	Mycoplasma pneumoniae	
	(e.g., encephalitis) ^b		


Pleural effusion

Lung abscess

Cavitary lesions- pneumatocele

Can occur in 50% of Children

Pathogens

S. aureus

S. pneumoniae

H. influenzae

Gram negative TB & fungal

Treatment: IDSA GUIDELINES

The Pediatric Infectious Diseases Society and the Infectious Diseases Society of America

- When Does a Child or Infant With CAP Require Hospitalization?
 - <u>Children and infants who have moderate to severe CAP</u>: respiratory distress and hypoxemia (sustained saturation of peripheral

oxygen [SpO2] <90 % at sea level. (strong recommendation; high-quality evidence)

- <u>Infants less than 3–6 months of age with suspected bacterial</u> CAP are likely to benefit from hospitalization. (strong recommendation; low-quality evidence)

Continue..

 Children and infants with suspected or documented CAP caused by a pathogen with increased virulence, such <u>as community-associated</u> <u>methicillin-resistant Staphylococcus aureus (MRSA) should be</u> <u>hospitalized.</u>

(strong recommendation; low-quality evidence)

 Children and infants for whom there is concern about <u>careful observation</u> <u>at home or who are unable to comply with therapy or unable to be</u> <u>followed up should be hospitalized.</u> (strong recommendation; low-quality evidence)

In-Patient management

- □ Adequate Hydration
- □ Oxygenation
- □ Antipyretics and pain control
- □ Monitoring of :
 - . RR
 - . WOB
 - . Temperature
 - . HR
 - . Oxygen saturation

ANTI-INFECTIVE TREATMENT

Inpatient:

- presumed bacterial pneumonia:
 - Ampicillin or penicillin G
 - Alternatives: ceftriaxone or cefotaxime
 - Addition of vancomycin or clindamycin for suspected CA-MRSA

MX- inpatients

• Presumed atypical pneumonia:

- Azithromycin (in addition to B-lactam, if diagnosis of atypical pneumonia is in doubt)

- Alternatives: Clarithromycin or erythromycin

Outpatient TTT of pneumonia

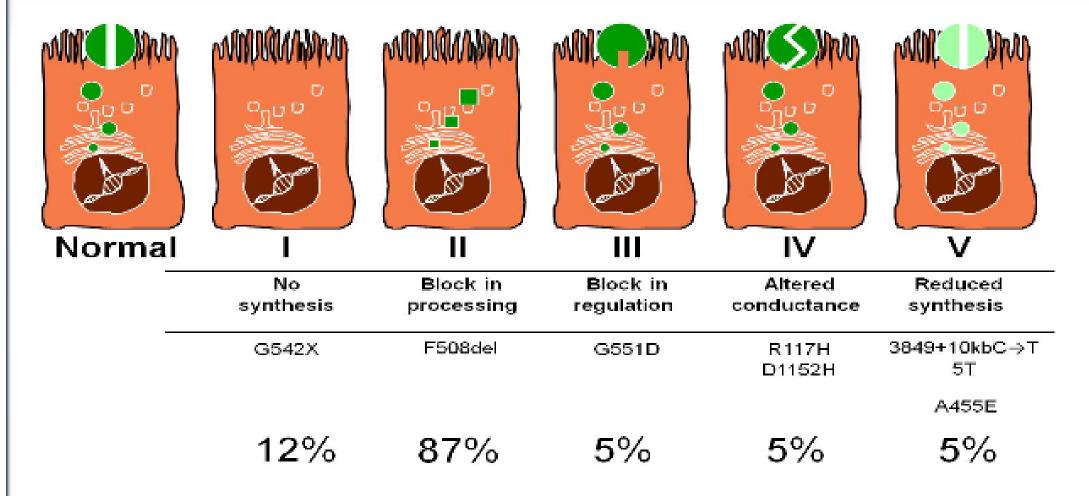
- Presumed bacterial pneumonia
 - Amoxicillin orally (90 ml/kg/day) or amoxicillin clavulanate

- Presumed atypical pneumonia
 - Azithromycin, clarithromycin or eryhtromycin

THAN K YOU

Cystic Fibrosis

- Multisystem genetic disease Characterized by: <u>chronic</u>, <u>progressive obstructive lung disease</u>
- Other systemic manifestations, such as: *nutrient malabsorption and malnutrition due to pancreatic insufficiency.*


liver disease and cirrhosis, and CF-related diabetes mellitus (CFRD).

- CF is common in the *Caucasian population* but does occur in all ethnic and racial groups.
- M/C gene mutated: delta F508

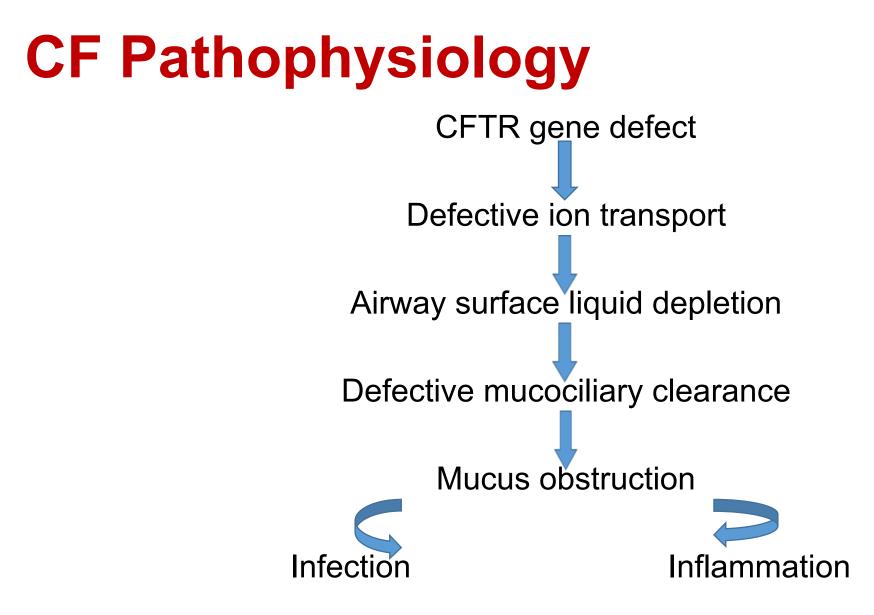
Cystic Fibrosis Transmembrane Conductance Regulator(CFTR)

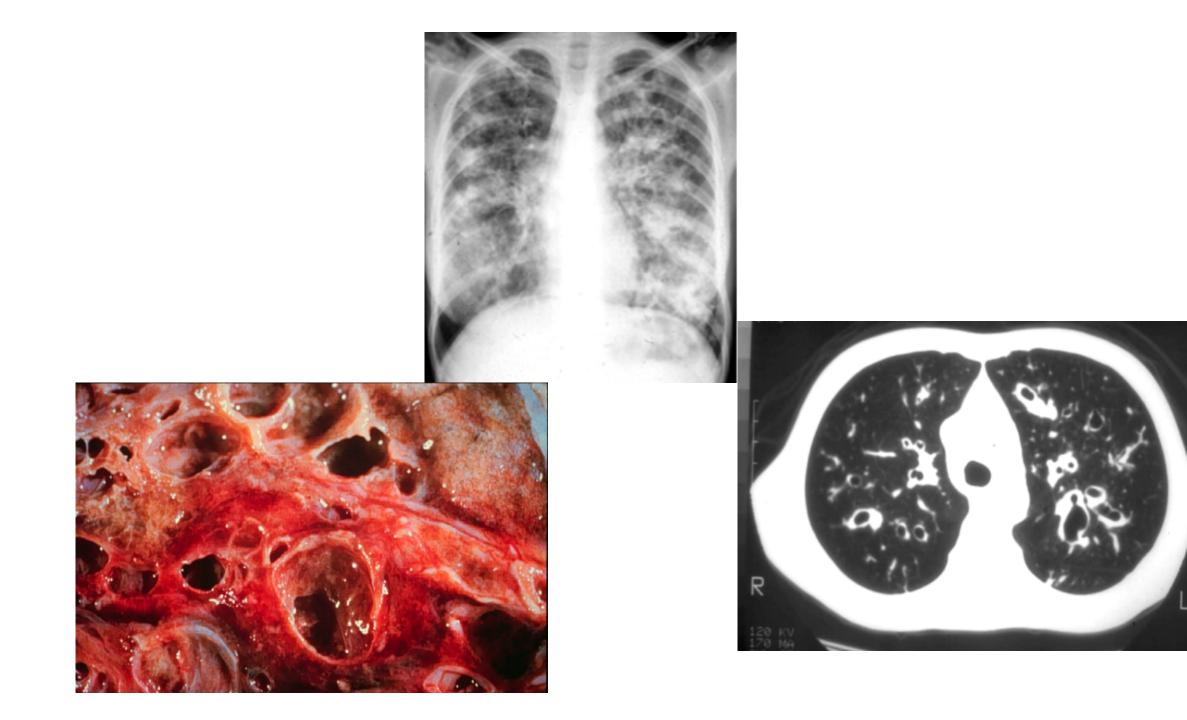
- Long arm chr 7
 - (7q31.2)

CFTR Classes of Mutations

Scriver CR, et al. The Metabolic and Molecular Bases of Inherited Disease. 2001:5121-5188.^[8]

Diagnosis


- Criteria
 - One of the following
 - . Presence of typical clinical features
 - . History of CF in a sibling
 - . Positive newborn screening test
 - Plus laboratory evidence for CFTR dysfunction
 - . Two elevated sweat chloride concentration on 2 separate days
 - . Identification of 2 CF mutations
 - . Abnormal nasal potential difference measurement


Diagnostic testing

- Newborn Screening test: pancreatic derived enzyme immunoreactive trypsinogen [IRT]
- Sweat Chloride: the most useful test for diagnosing CF. ≥60 mmol/L
- Genetic testing
- The standard diagnostic test for pancreatic insufficiency has been the three day fat collection.

Sweat Chloride testing

- IF NBS +ve: Sweat Cl testing when the <u>infant weighs >2 kg</u>, and is <u>at</u> <u>least 36 wk of corrected gestational age.</u>
- Newborns greater than <u>36 wk gestation and >2 kg body weight</u> with a positive CF newborn screen, should have sweat chloride testing performed as soon as possible after 10 d of age, ideally by the end of the neonatal period (4 wk of age).
- In children </= 6 months: sweat Cl <30 is negative, 30-59 is An intermediate sweat chloride value (consider extended CFTR gene analysis), >/= 60 mmol/l ...CF

Pathophysiology

- Gastrointestinal:
 - <u>Pancreas</u>
 - Absence of CFTR limits function of chloride-bicarbonate exchanger to secrete bicarbonate.
 - Leads to retention of enzymes in the pancreas, destruction of pancreatic tissues.

Pathophysiology

- Intestine
 - Decrease in water secretion leads to thickened mucus and desiccated intraluminal contents.
 - Obstruction of small and large intestines

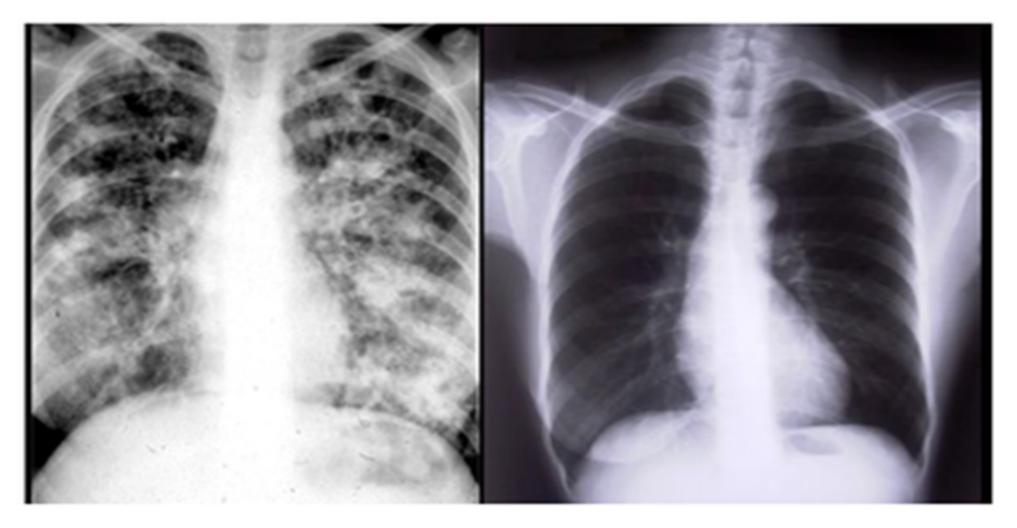
-Biliary Tree:

- Retention of biliary secretion
- Focal biliary cirrhosis
- Bile duct proliferation.
- Chronic cholecystitis, cholelithiasis

Manifestations:

- Respiratory tract:
 - Chronic sinusitis.
 - . Nasal obstruction
 - . Rhinorrhea
 - . Nasal polyps in 25%; often requires surgery
 - <u>Chronic Cough:</u>
 - . Persistent
 - . Viscous, purulent, green sputum

Manifestations


- Infection:
 - . Initially with H. influenza and S. aureus
 - . Subsequently P aeruginosa
 - . Occassionally, Burkholderia gladioli, proteus, E. coli, klebsiella.

- Lung Function:

- . Small airway disease is first functional lung abnormality
- Progresses to reversible as well as irreversible changes in FEV1
 Chest x-ray may show hyperinflation, mucus impaction, bronchial cuffing, bronchiectasis

Complications

- <u>Respiratory Tract:</u>
 - . Pneumothorax : 10% of CF pts
 - . Hemoptysis
 - . Digital clubbing
 - . Cor pulmonale
 - . Respiratory failure

Cystic Fibrosis Lung

Healthy Lung

Complications

Gastrointestinal:

- <u>Meconium ileus</u>
 - . Abdominal distention
 - . Failure to pass stool
 - . Emesis
- DIOS: distal intestinal obstruction syndrome
 - . RLQ pain
 - . Loss of appetite
 - . Emesis
 - . Palpable mass
 - . May be confused with appendicitis

Gastrointestinal complications

- Exocrine pancreatic insufficiency
 - . Found in > 90% of CFpts
 - . Protein and fat malabsorption
 - . Frequent bulky, foul-smelling stools
 - . Vitamins A,K,E,D malabsorption
- Increased incidence of GI malignancy

Genitourinary

- Late onset puberty

. Due to CLD and inadequate nutrition.

- >95% of male pts with CF have azospermia due to obliteration of the vas dererens
- 20% of female pts with CF are infertile

Treatment

- Major objectives:
 - Promote clearance of secretions
 - Control Lung infection
 - Provide adequate nutrition.
 - Prevent intestinal obstruction

TTT: Lung

- > 90% of CF pts die from complications of lung infection
- Antibiotics:
 - Early intervention, long course, high dose
 - Staphylococcus-anti staph: fluclox
 - Pseudomonas-treated with two drugs with different mechanisms to prevent resistance- e.g: cephalosporin (ceftazidime) + aminoglycoside(amikacin, gentamicin)
 - Use of aerosolized antibiotics

- Increasing mucus clearance

. Long-term DNAse treatment increase time between pulmonary exacerbations

- . Inhaled beta-adrenergic agonists to control airway constriction
- . Oral glucocorticoids for allergic Bronchopulmonary aspergillosis (ABPA)

Lung:

- Atelectasis

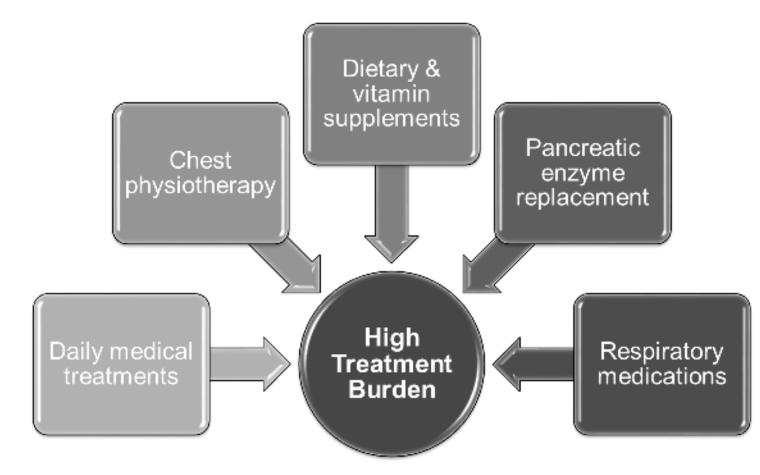
. Chest PT + antibiotic

- Respiratory Failure and cor pulmonary

. Vigorous medical management

- . Oxygen supplementation
- . NIV
- . Lung transplantation

Treatment


• Gastrointestinal:

- Pancreatic enzyme replacement
- Replacement of fat-soluble vitamins- especially Vitamin E & K
- insulin for hyperglycemia
- Intestinal obstruction
 - . Pancreatic enzymes (creon) +osmotically active agents
 - . Distal-hypertonic radio contrast material via enema

TTT: Gastrointestinal

- End-stage liver disease- transplantation
 - . 2 year survival rate >50%

Complexity of CF Treatment

Bregnballe, et al. Patient Prefer Adherence. 2011;5:507-15. Sawicki, et al. Pediatr Pulmonol. 2012;47(6):523-33

- CF is an inherited monogenic disorder presenting as a multisystem disease
- Pathophysiology is related to abnormal ion transportation across epithelia
- Respiratory, GI and GU manifestations
- Treatment is currently preventative and supportive

THANK YOU