Hyponatermia [Dr. Hussein's Seminar]

Tl;dr: nL electrolytes' values > Measured vs Calculated Serum osmolarity > Fluids > Hypo/hypernatremia > Closing questions

The principles:

1- Learning normal electrolytes' values is crucial to knowing what an isotonic IV fluid is.

- nL sodium levels: 140 mEq/L
- nL chloride levels: 105 mEq/L
- nL glucose leves: 100 mEq/L
- nL BUN: 15 mEq/L

2- Serum osmolarity:

- Calculated: 2Na + Glucose/20 + BUN/3
- Measured: Here we are measuring the total number of Osmoles in given serum. It <u>normally</u> should be equal to the calculated serum osmolarity with a **small osmolar gap of -14 to +10** of un-calculated osmoles.
 - Knowing there can be abnormal osmolar gap is crucial. Serum's osmolarity can be normal but the patient is facing hyponatermia namely because of excess other osmoles.
- Let us plug in the values of sodium, glucose and blood urea nitrogen to calculate normal serum osmolarity.

- 140*2 + 100/20 + 15/3 = 280 + 5 + 5 = **<u>290 mEq/L</u>**

- 3- Fluids
 - For Hepatorenal syndrome you use the [Fluid] <u>IV albumin</u> and this is, according to doctor, the only case in which you begin with colloids.
 - The most common fluid used in clinical practice is: **Normal Saline**
 - <u>or</u> 0.9% NaCl. In any other case/question (step2/etc) other than hepatorenal syndrome, the 1# choice is nL saline.
 - Its osmolarity is the sum of its individual osmoles resulting in <u>308</u> a bit more than the serum osmolarity but we will assume normal saline is isotonic.
 - However you must be careful because <u>administering more than 5L</u> of normal saline would risk the patient having <u>hyperchloraemic</u> <u>metabolic acidosis</u>
 - For surgery, they absolutely love Ringer's lactate. It is closer to serum's osmolarity constituents than normal saline.

- Bicarbonate solution which can be used in cases of acidosis like: NaHCO3 50 mmol/L -> 100 mEq/L (Na + HCO3 50 mEq/L each)
- D5W's (Dextrose 5% in water) <u>osmolarity is ignored and assumed to</u> <u>be zero</u> and when mixed with any other fluid, you take the other fluid's osmolarity as the total solution's osmolarity.
 - Ex: 75 mEq/L NaHCO3 + D5W = 150 mEq/L
 - D5W + 3 ampules of NaHCO3 = 300 mEq/L
 - D5W + [Any fluid X] = The osmolarity of Fluid X

Fluid composition	NS	LR	Plasmalyte
Na (mEa/L)	154	130	140
CI (mEq/L)	154	109	98
K (mEq/L)		4	5
Ca (mEq/L)		2.7	•
Mg (mEq/L)			3
Buffer (mEq/L)	None	Lactate 28	Gluconate 23 Acetate 27
рН	5	6.5	7.4
SID	0	28	50
Price/L	\$1.30	\$1.66	\$7.12

4- Hyponatermia

- The bigger picture:
 - O. Patient came with symptoms of low sodium (N/V, headache, spasms etc)
 - A. Calculate Serum osmolarity
 - B. Compare the calculated to Measured serum osmolarity
 - C. Is it Iso-osmolar? Hyper-osmolar? Hypo-osmolar?
 - D. If Hypotonic, is it True hyponatermia or Pseudo hyponatermia?
 - E. If true then assess volume status.
 - F. If euvolemic then measure urine osmolarity and urine sodium concentration.

- Step 1; Serum osmolarity.
 - You don't start with volume. You need to have the calculated and measures serum osmolarity compared to ensure no osmolar gap.
 - 3 Possibilities:
 - Iso-osmolar
 - Keywords: DDx: Multiple myeloma or Severe Hyperlipidemia
 - It is a pseudohyponatremia, a product of laboratory artefacts. The calculated osmoles will be elevated but measured will be normal. This is due to fats and proteins.

- Hyper-osmolar

- The measured is high.
- Here, other "stuff" accounts for osmotic activity other than sodium.
- In principle, for every **100mg/dL** of glucose above 100 adjust by factor of 2.
 - Ex: Meaning if blood glucose is 300 and Sodium is 125 then (125+(2*2)) = 129 mEq/L.
 - If the corrected sodium is within normal ranges this suggests hyponatermia is due to the elevated osmotic compound alone and if even after the correction still low suggests another additional cause.
- Give differential diagnosis of possible osmotic-culprits:
 - Hyperglycemia
 - Glucose increases the ECF compartment's osmolarity shifting the water from cells to ECF thus a <u>true</u> dilutional hyponatermia.
 - There is no osmolar gap because glucose is calculated.
 - Mannitol:
 - Key words: Neurosurgery. Anaesthesia.
 - Similar to glucose would increase the ECF osmolarity causing a shift of water and thus a dilutional hyponatermia but different to glucose, it is not calculated and thus would appear as <u>an osmolar</u> <u>gap</u>.
 - Example: Intracerebral haemorrhage patient on mannitol. Sodium is low ~128 mEq/L. Serum osmolarity is calculated to a 256 mOs/L. The measured osmolarity is 330 mOs/L.
 - Rx: Supportive. Give normal saline.
 - Glycine
 - Key words: Prostatic surgery. Transurethral

resection of the prostate.

- Glycine and mannitol won't cause anion gap acidosis.
- Rx: Supportive. Give normal saline.
- Hypo-osmolar
 - The measured and calculated is low.
 - Next step is assessment of volume status!
 - Hyper-volemic
 - Key words: Edema, JVP, etc.
 - Etiologies leading to generalised edema. (CHF, Cirrhosis/ Kidney Gn or End-stage CKD/ malabsorption hypoalbuminemia)
 - Cirrhosis and Glomerulonephritis can have a hypoalbuminemia [Hypo-osmolar] -> Thus, low intravascular volume. And the first compensatory mechanism of body is RAAS activation -> +ADH release
 Free water retention (Poor prognostic sign) -> Hyponatermia.
 - Rx: Diuretics.
 - Hypovolemic
 - Keywords: BP low, orthostatic pressure.
 - Rx: Give fluids IV.
 - Euvolemic
 - We are left with **RATS to rule out**. Rule out each disease one at a time.
 - Renal tubular acidosis (U/A), Addison's disease(ACTH/ Cortisol), Thyroid disease(TSH) and SIADH.
 - You here think: What would the kidney do with this water/sodium? If high water then it should dump it and dilute the urine and vice versa!
 - Here you need to get **urine osmolarity and urine sodium.**
 - **SIADH** is a diagnosis of exclusion, you don't see euvolemic hyponatermia and jump in; Oh SIADH!
 - Keywords: Brain tumour, infarction, SSRIs, Stress (Marathon, exercise), Paraneoplastic (Lung cancer pulmonary etc)
 - DDx: DM/Central DI/Nephro DI/ Psychogenic polydipsia/ Beet potomania
- *EMERGENCY* Acute vs chronic; Acute hyponatermia is more dangerous in that it can cause acute hypo-osmolar state, water moves fro intravascular spaces to cells and eventually our most feared complication brain's herniation and thus.... **DEATH.**
 - If for instance it was a mannitol induced:

Closing questions:

1- 18 yo unconscious. Na: 124, Calculated Serum osmolarity 320 mOs/L, measures is 325 mOs/L. Determine the hyponatermia's type.
A. Serum osmolarity is high.
B. nL osmolar gap.
Thus, hyperosmolar hyponatermia. Order Blood sugars; 800 mg/dl. 124+(7*2) = 138 thus roughly nL corrected sodium levels correct for osmotic compound

causing all of this.

2- 71yo s/p, TUPR, Na 128, serum osmolarity 265 and measured is 330 mOs/L. Determine the hyponatermia's type. Hyperosmolar. *Glycine

3- 71y anemia, back pain, Na 128, SO 292 mOs/L, measured 288 mos/L. Determine the etiology. MM till proven otherwise.

3- 45y man taking SSRI, Na 126, SO 260 mOs/L, measured is 264 mOs/L. Next step? Volume -> Euvolemic. *You need to rule out *Hypothyroidism *Adrenal insufficiency *ACTH/Adrenal cortisol Next step? Urine osmolarity. Urine Na 8 mEq/L Urine osmolarity 50 mEq/L *Doesn't make sense for even a SIADH, Na should be high where here it isn't.

Notice the increase in urine osmolarit is not that high, Water intoxication is likely.

4- 18yo mathon runner collapsed, Na 118.

*Emergency, acute hypo-osmolar state, you don't have time for further tests. ****Thus!** You manage with? 3% saline 100 ml over 10-15 minutes x3 times you save a life. You increased the tonicity to make water go back to the intravascular.

5- 60 yo, Na 128, SO = 262 mOs/L and equals the measured. Euvolemic. Urine osmolarity = 400 mOs/L and Urine Na = 8 mEq/L

*This is not SIADH again because of low urina Na.

*Then, *think simply*, Notice the very large urine osmolarity. Pre-renal/ **Dehydration!**

*If Na was 48 for ex and after ruling out other ddxs then SIADH.