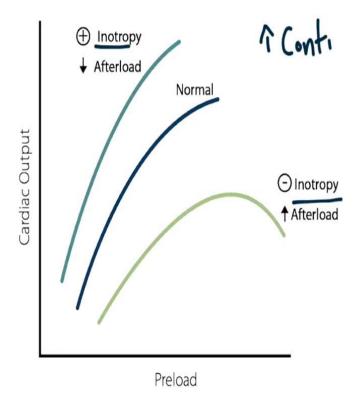
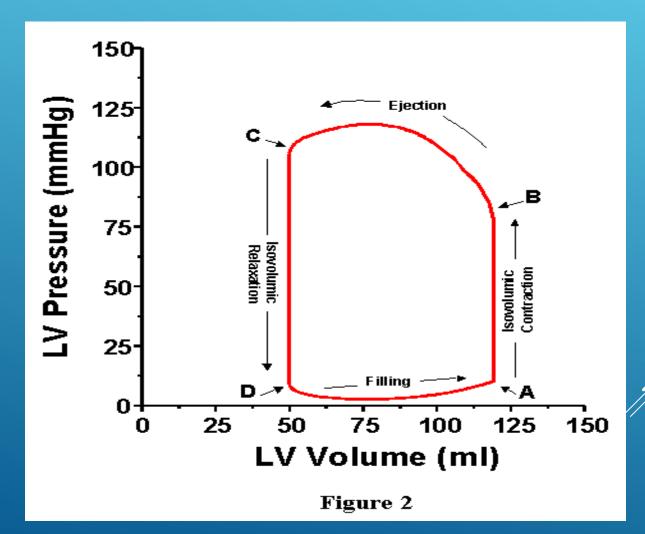
HEART FAILURE

Hanna K. AL-Makhamreh, MD FACC

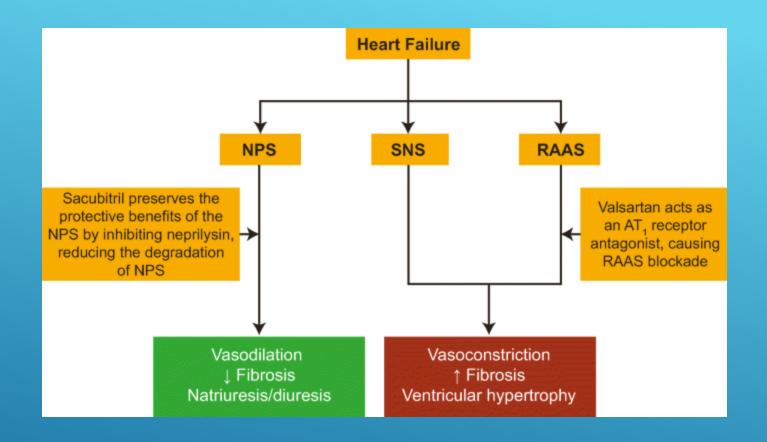

Associate Professor of Cardiology

University Of Jordan


PHYSIOLOGY (FRANK-STARLING) CURVE

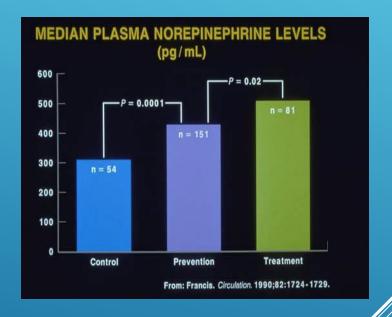
- Preload reduction
 - Diuretics
 - venodilators
- Vasodilators ACEI
- InotropesDobutamine

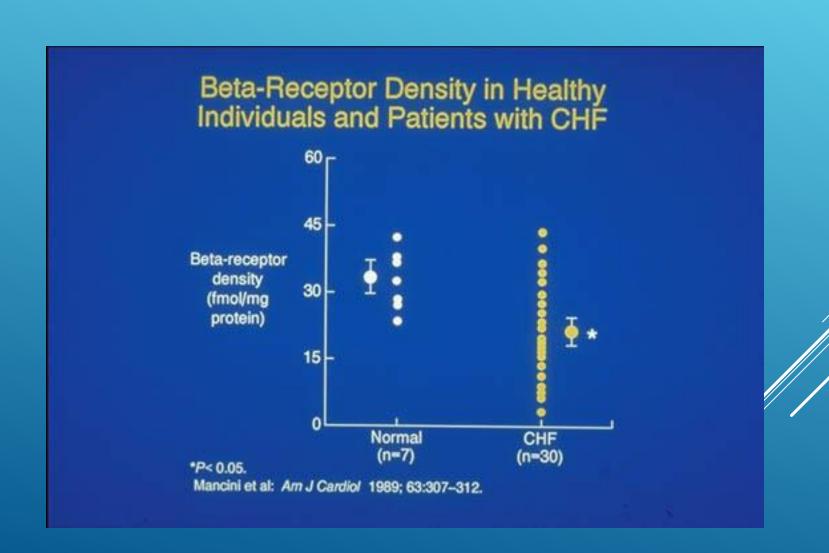
Starling Curve



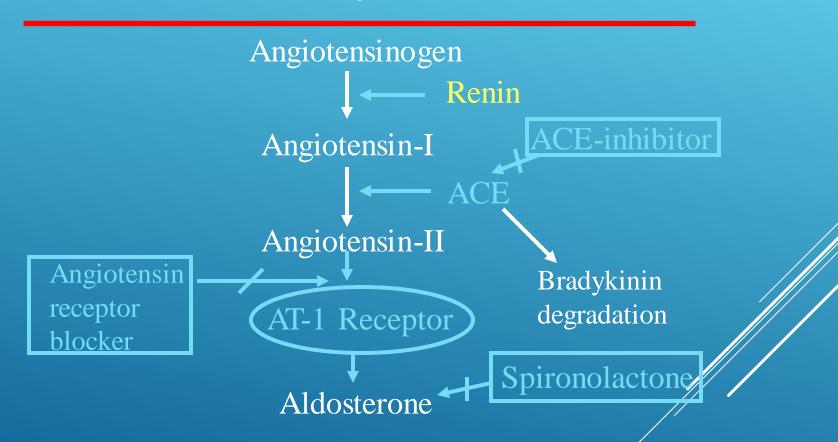
PRESSURE-VOLUME LOOP

PATHOPHYSIOLOGY

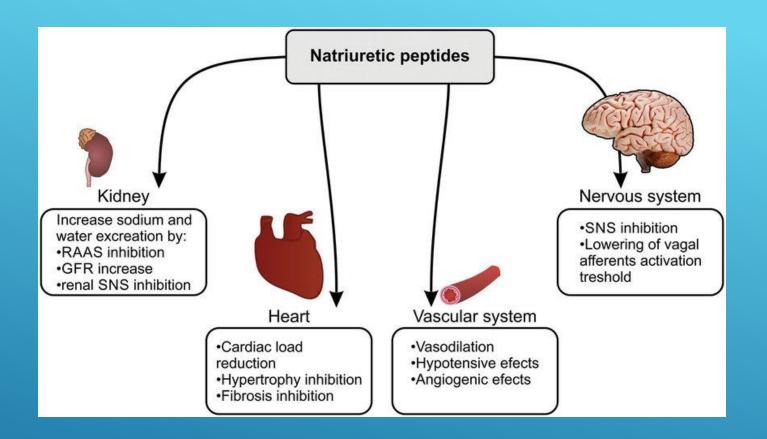

- •Initial Compensation for impaired myocyte contractility:
 - •Frank-Starling mechanism
 - •Neurohumoral activation
 - † intravascular volume
- •Eventual decompensation
 - •ventricular remodeling
 - •myocyte death/apoptosis
 - •valvular regurgitation


PATHOPHYSIOLOGY OF HF

PATHOPHYSIOLOGY: NEUROHUMORAL

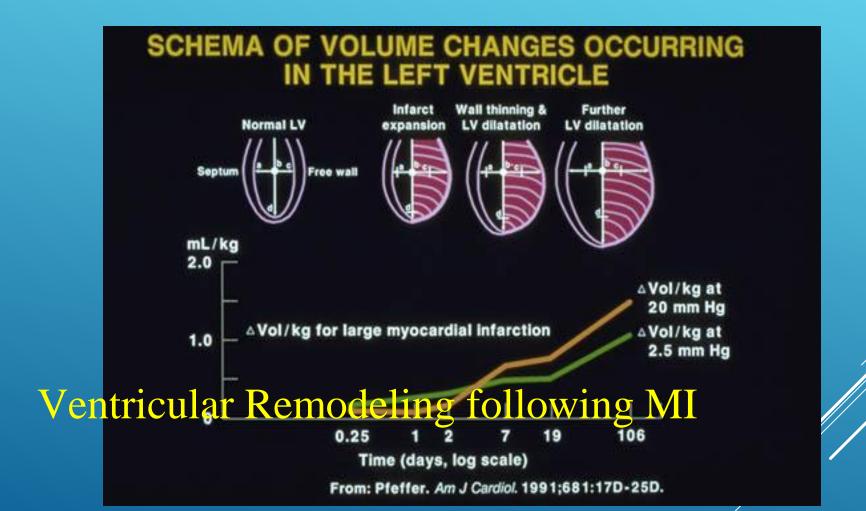

- Adrenergic nervous system
- Renin-angiotensinaldosterone system
- Natriureticpeptides

NEUROHUMORAL


RENIN-ANGIOTENSIN-ALDOSTERONE PATHWAYS

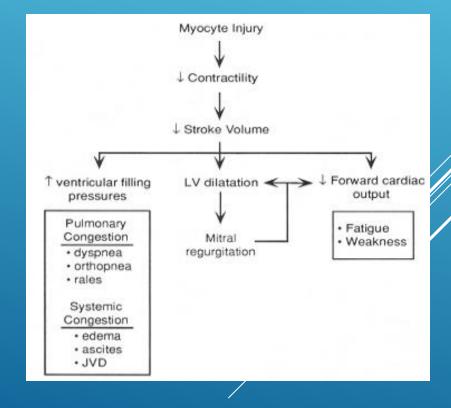
ANGIOTENSIN-II EFFECTS

- Vasoconstriction
- Aldosterone production
- Myocyte hypertrophy
- Fibroblast proliferation
- Collagen deposition


- Apoptosis
- ▶ Pro-thrombotic
- Pro-oxidant
- Adrenergic stimulation
- Endothelial dysfunction

THE KIDNEY AND THE HEART FAILURE

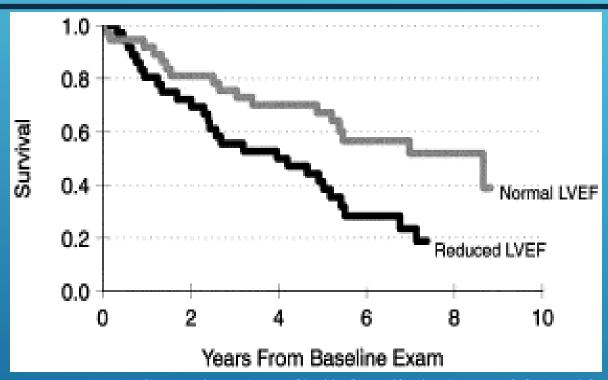
- Reduced renal blood flow
- Reduced glomerular filtration rate
- Increased renin production
- Increased tubular sodium reabsorption
- Increased free water retention (vasopressin)


VENTRICULAR REMODELING IN HEART FAILURE

CLINICAL FINDINGS

Biventricular Congestive Heart Failure

- -Low forward Cardiac Output -fatigue, lightheadedness, hypotension
- -Pulmonary Congestion
 -Dyspnea,
 -orthopnea, & PND
- -Systemic Congestion
 -Edema
 -Ascites
 -Weight gain


PHYSICAL EXAM

```
Decreased C.O.
     Tachycardia
     ↓ BP and pulse pressure
     cool extremities (vasoconstriction)
     Pulsus Alternans (end-stage)
Pulmonary venous congestion:
     rales
     pleural effusions
Cardiac:
     laterally displaced PMI
     S3 (acutely)
     mitral regurgitation murmur
Systemic congestion
     ↑ JVD
     hepatosplenomegaly
     ascites
     peripheral edema
```

DIAGNOSTIC STUDIES

```
CXR -enlarged cardiac silhouette,
     vascular redistribution interstitial edema,
     pleural effusions
EKG –normal
     tachycardia, atrial and ventricular
      enlargement, LBBB, RBBB, Q-waves
Blood Tests
     (KFT, BNP, ANA,RF, Fe<sup>2+</sup>, TFT's,ferritin,)
Echocardiography
     LV size, wall thickness function
     valve dz, pressures
Cardiac Catheterization
     hemodynamics
     LVEF
     angiography
Endomyocardial Biopsy
```

INFLUENCE OF EF ON SURVIVAL IN PATIENTS WITH HEART FAILURE



Vasan RS et al. J Am Coll Cardiol. 1999;33:1948-55

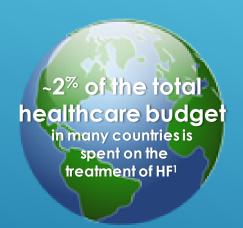
HEALTH PROBLEM HEALTH PROBLEM HEALTH PROBLEM HEALTH PROBLEM HEALTH PROBLEM HEALTH PROBLEM HEALTH PROBLEM

~2% ~15 million

of the population in Europe have HF¹

219 130 70‡

HF is the leading cause of hospitalization in people aged ≥65


An aging

population⁵

HF=heart failure; MI=myocardial infarction; ‡Calculated using the incidence rate of HF in 1997 for Hong Kong and applying it to the Chinese population

1. Dickstein et al. Eur Heart J 2008;29:2388–442; 2. Go et al. Circulation 2013;127:e6–e245; 3. Allender et al. Coronary Heart Disease Statistics 2008; 4. Hung et al. Hong Kong Med J 2000;6:159–62; 5. Hunt et al. J Am Coll Cardiol 2009;53:e1–90; 6. Kearney et al. Lancet 2005; 365:217–23; ; 5. Forman et al. Am Heart J 2009;157:1010–17; 6. Healthcare Cost and Utilization Project 2009 (http://www.hcup-us.ahrq.gov/reports/factsandfigures/2009/TOC_2009.jsp Accessed January 2013

HF IMPOSES A SIGNIFICANT ECONOMIC BURDEN ON THE HEALTHCARE SYSTEM

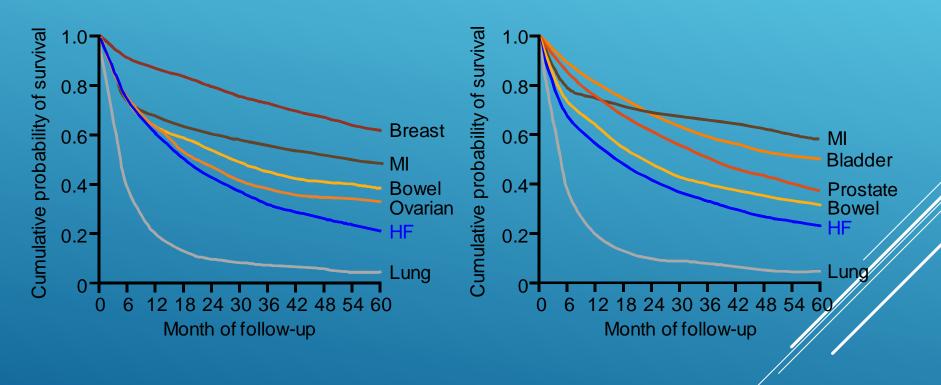
\$ (\$ (\$)\$ (\$ (\$)\$ (\$)\$ (\$)\$ (\$)\$ (\$)\$ (\$)\$ (\$) OF THE COST OF HE IS DUE TO HOSPITALIZATIONS TO THE COST OF HE IS

\$\$\$\$\$\$\$\$\$ ~ **10**%

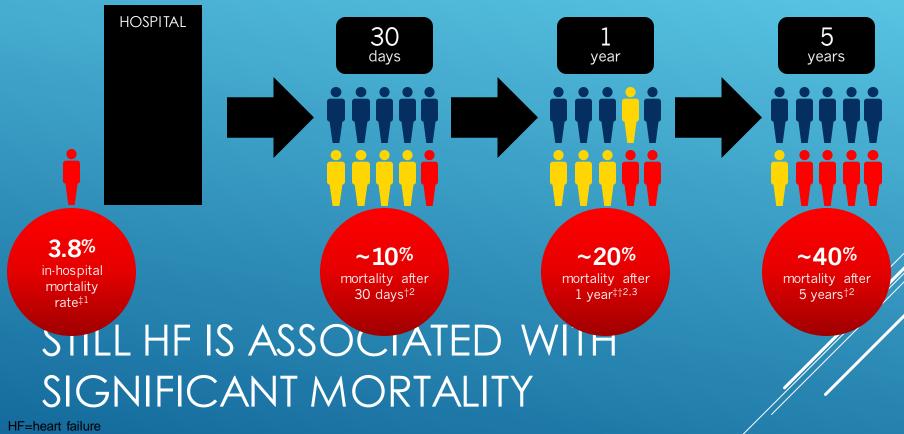
OF THE COST OF HF IS **DUE TO PHARMACOLOGICAL TREATMENT**²

THE TOTAL COST OF HF IN THE USA ALONE IS **EXPECTED TO INCREASE**

~120% by 2030


HF=heart failure; [‡]USA estimate includes direct costs (total annual medical spending) and indirect costs (lost productivity due to morbidity and mortality)

1. Dickstein et al. Eur Heart J 2008;29:2388–442; 2. Hunt et al. J Am Coll Cardiol 2009;53:e1–90; 3.Go et al. Circulation 2013;127:e6–e245

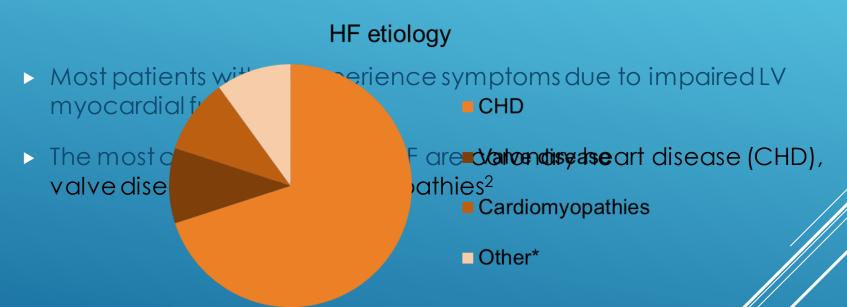

MORTALITY FOLLOWING ADMISSION FOR ACUTE HEART FAILURE EXCEEDS THAT OF MOST CANCERS

Female survival rates (%): HF, MI and other malignancies

Male survival rates (%): HF, MI and other malignancies

All patients with a first admission to any Scottish hospital in 1991 for HF, MI or the four most common types of cancer specific to men and women were identified, and 5-year survival rates compared

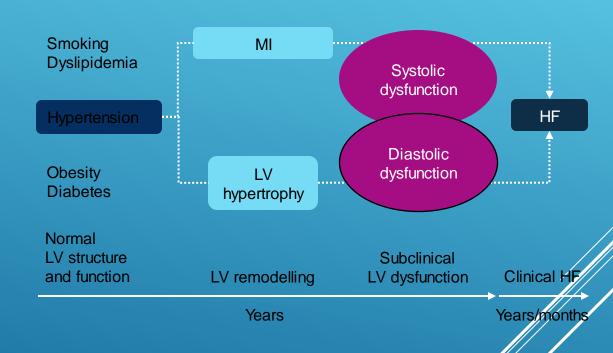
[‡]Data from 1,892 European patients with acute heart failure in the European Society of Cardiology Heart Failure (ESC-HF) Pilot study


[†]Analysis of HF data from 1,282 incident cases of heart failure in the Atherosclerosis Risk in Communities (ARIC) population-based study of n=15,792 individuals from four communities in the USA (1987–2002)

1. Maggioni et al. Eur J Heart Fail 2010;12:1076–84; 2. Loehr et al. Am J Cardiol 2008;101:1016–22; 3. Maggioni ét al. Eur J Heart Fail 2013;15:808–17

HEART FAILURE IS A PROGRESSIVE CONDITION WITH HIGH MORBIDITY AND MORTALITY

HEART FAILURE HAS A NUMBER OF COMMON CAUSES



*Including hypertension, diabetes, exposure to cardiotoxic agents, peripartum cardiomyopathy, etc.

- CHD is the underlying cause of 60–70% of acute HF cases³
- 1. Hunt et al. J Am Coll Cardiol 2009;53:e1-90
- 2. Dickstein et al. Eur Heart J 2008;29:2388-442
- 3 Niematriculariean J 2005;26:384-416

HIGH PREVALENCE OF MULTIPLE CO-MORBIDITIES

- Many patients with chronic HF have a range of co-morbidities that contribute to the cause of the disease and play a key role in its progression and in the response to therapy
 - hypertension*
 - ▶ ischemic heart disease*
 - diabetes mellitus
 - cardiac arrhythmias
 - ventricular arrhythmias
 - atrial fibrillation
 - respiratory disorders
 - cognitive dysfunction
 - hyperlipidemia
 - > chronic anemia
 - > renal failure
 - arthritis

This can result in patients burdened with multiple pills per day, each with different dosage schedules, with an increased potential for drug-drug interactions

*Major contributors to development of HF

Krum, Gilbert. Lancet 2003;362:147-58

GUIDELINE DEVELOPMENT

ACCF-AHA 2013

ESC 2012

HFSA 2010

NICE AHF 2014/ CHF 2010

Level of Evidence				
Α	Multiple populations evaluated*			
	Data from multiple randomized clinical trials or meta-analyses			
В	Limited populations evaluated*			
	Data from single randomized			
	clinical trial or nonrandomized studies			
С	Very limited populations evaluated*			
	er albaica			
	Consensus of opinion of the			
	experts, case studies, or standard-			
	of-care			
	available from clinical frials or registric			

	Class of Recommendation				
I	Benefit>>> Risk Procedure/Treatment SHOW D be performed /administered				
lla	Procedure/Treatment SHOULD be performed/administered Benefit >> Risk (Additional studies with focused objectives needed)				
	IT IS REASONABLE to perform procedure/administer treatment				
llb	Benefit≥Risk (Additional studies with broad objectives needed; additional registry data would be helpful)				
	Procedure/Treatment MAY BE CONSIDERED				
Ш	No Benefit : Procedure/test is not helpful and treatment has no prov en benefit				
	Harm: Procedure/test is expensive, without benefit or harmful, and treatment is potentially harmful to patients				

*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations, such as sex, age, history of diabetes, history of prior myocardial infarction, history of heart failure, and prior aspirin use.

HEART FAILURE DEFINITION

Heart Failure

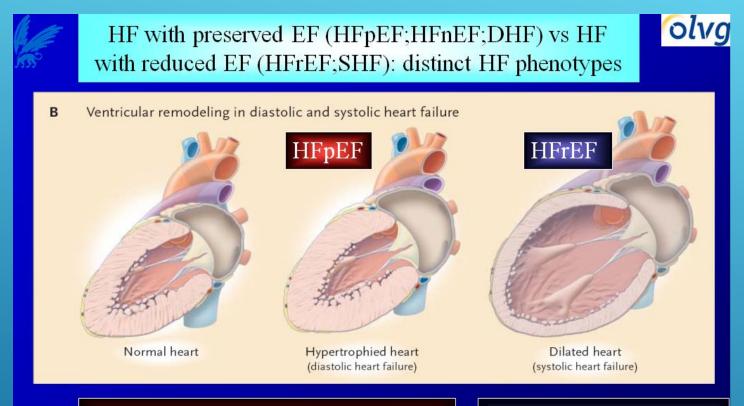
the guidelines define heart failure (HF) as a clinical syndrome in which patients have typical symptoms and signs resulting from an abnormality of cardiac structure or function which impairs the ability of the ventricle to fill with or eject blood.

- symptoms (e.g. breathlessness, orthopnea, paroxysmal nocturnal dyspnoea, ankle swelling, fatigue, and reduced exercise tolerance)
- **signs** (e.g. elevated jugular venous pressure, hepatojugular reflux, third heart sound [gallop rhythm], cardiac murmur, and displaced apex beat)

Acute HF is recognized as a separate entity by most of the guidelines, except AHA 2013 and HFSA 2010.

 AHF is defined as the rapid onset of (de novo), or change in, symptoms and signs of HF (decompensated HF)

Based on the LVEF


Based on the Functional Status

Based on Clinical Progression

Based on Hemodynamic Status The guidelines differ with respect to the LVEF cut-off limits for classification of HF as HFrEF and HFpEF

Types	ACCF-AHA 2013	ESC 2012	HFSA 2010	NICE 2010
HFrEF	≤40%	≤35%	<50%	
HFpEF	≥50%	>50%	≥50%	No thresholds of LVEF defined
	41%-49% (mrHF,)>10% to be >40%, improved (HFiEF)	35–50% 'grey area'; most probably have primarily mild systolic dysfunction		delined

HEART FAILURE SUBTYPES

HFpEF:

- * Preserved systolic LV function
- * No LV dilatation
- * Concentric LV remodeling/hypertrophy
- * Diastolic LV dysfunction

HETER:

- * Systolic LV dysfunction
- * LV dilatation
- * Eccentric LV remodeling
- * Diastolic LV dysfunction

Jessup, NEJM 2003;348:2007

Based on the LVEF

Based on the Functional Status

Based on Clinical Progression

Based on Hemodynamic Status The guidelines classify patients with HF based on the severity of their symptoms and physical activity (New York Heart Association [NYHA] functional classification)

Class	Severity of symptoms and limitation of physical activity			
1	No limitation of physical activity Ordinary physical activity does not cause symptoms of HF (breathlessness, fatigue, or palpitations)			
Ш	Slight limitation of physical activity Comfortable at rest, but ordinary physical activity results in symptoms of HF			
Ш	Marked limitation of physical activity Comfortable at rest, but less than ordinary physical activity causes symptoms of HF*			
IV	Unable to carry on any physical activity without discomfort/symptoms of HF, or symptoms of HF at rest may be present If any physical activity is undertaken, discomfort is increased			

Based on the LVEI

Based on the Functional Status

Based on Clinical Progression

Based on Hemodynamic Status

- ACCF-AHA 2013 guidelines classify patients with HF based on the development and progression of HF
- These stages provide complementary information to the NYHA classification regarding the severity of HF

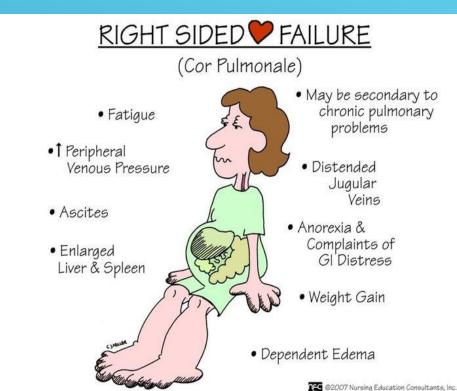
Stages of HF	Development and progression of HF	Corresponding NYHA Class
Α	At high risk for HF but without structural heart disease or symptom s of HF	None
В	Structural heart disease but without signs or symptoms of HF	T
		1
С	Structural heart disease with prior or current symptoms of HF	II
		III
D	Refractory HF requiring specialized interventions	IV

Based on the LVEI

Based on the Functional Status

Based on Clinical
Progression

Based on Hemodynamic Status ACCF-AHA 2013 guidelines classify hospitalized patients with HF based on their hemodynamic status, including the degree of congestion ("dry" versus "wet"), as well as the adequacy of peripheral perfusion ("warm" versus "cold")


		Congestion at rest? (e.g. orthopnea, elevated jugular venous pressure, pulmonary rales, S3 gallop, edema)		
		No	Yes	
Low perfusion at rest? (e.g. narrow pulse pressure, cool extremities, hypotension)	No	Warm and Dry	Warm and Wet	
coorexiremines, hypotension)	Yes	Cold and Dry	Cold and Wet	

SYMPTOMS

SIGNS

Figure 24. CXR Showing Acute Decompensated Heart Failure

Method	ESC*	Purpose
ECG	IC	Shows the heart rhythm and electrical conduction. Important for decisions about treatment (e.g. rate control and anticoagulation for AF, pacing for bradycardia, or CRT if the patient has LBBB). It may show evidence of LV hypertrophy or Q waves (indicating loss of viable myocardium), giving a possible clue to the etiology of HF.
Chest X-ray	llaC	Most useful in identifying an alternative, pulmonary explanation for a patient's symptoms and signs. It may show pulmonary venous congestion or edema in a patient with HF.
Echocardiogram	IC	Provides immediate information on chamber volumes, ventricular systolic and diastolic function, wall thickness, and valve function.

The echocardiogram and electrocardiogram are the most useful tests in patients with suspected HF

INVESTIGATIONS TO CONSIDER IN SELECTED PATIENTS

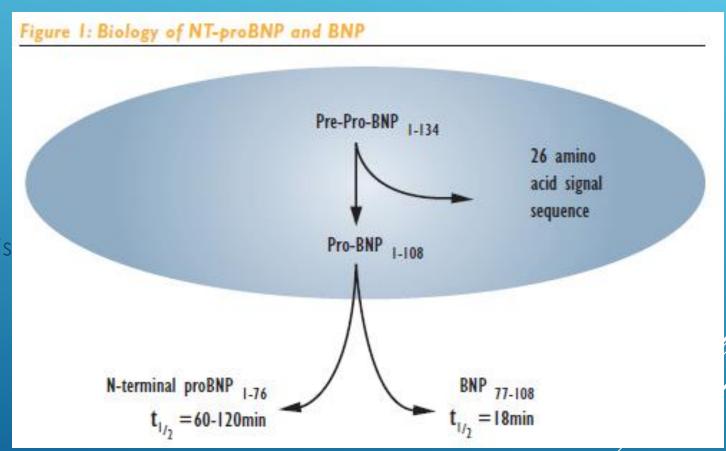
LABORATORY TESTS

Method	ESC*	Purpose
Biochemical and hematological investigations	IC	 Determine whether RAAS blockade can be initiated safely (renal function and potassium). Exclude anemia (can mimic or aggravate HF).
Natriuretic Peptide (NP)	IIaC	 Where the availability of echocardiography is limited, an alternative approach to diagnosis is to measure the blood concentration of NP. NP levels also increase with age, renal insufficiency, but may be reduced in obese patients. A normal NP level in an untreated patient virtually excludes significant cardiac disease, making an echocardiogram unnecessary.

CARDIAC NATRIURETIC PEPTIDES

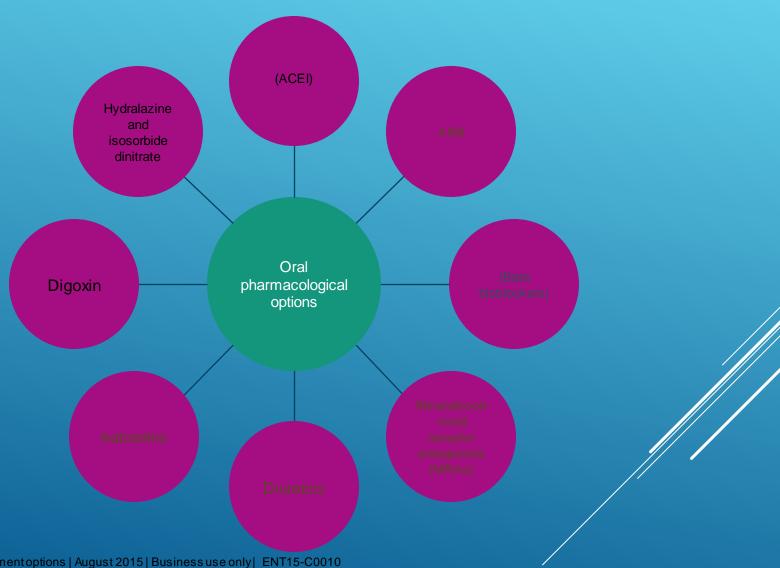
What is BNP?

- A 32 amino acid polypeptide
- Belong to a class of structurally similar natriuretic peptides (classes A,B,C and D)
- Secreted by cardiac myocytes (mainly left) in response to excessive distension of the Heart ventricles
- Similar to ANP (Atrial Natriuretic Peptide) but has longer $t_{1/2}$ (~20mins, double that of ANP) Named after extracts found in Pig-brain


What is NT-proBNP?

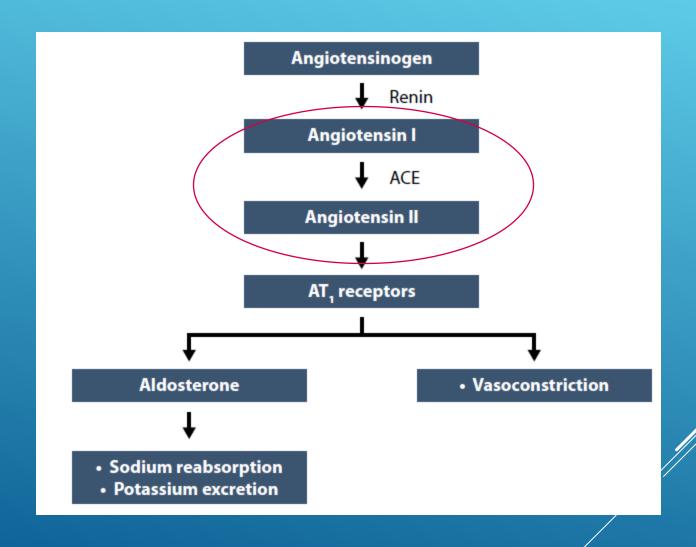
- NT-proBNP is a biologically inactive 76 amino acid N-terminal fragment
- Co-secreted with BNP
- Even longer $t_{1/2}$ than BNP (~1-2hrs vs ~20mins)

Biological effects of Cardiac Natriuretic peptides


- Increase Natriuresis
- Decrease peripheral vascular resistance
- Overall reduce blood volume and therefore Cardiac Output

SYNTHESIS IN MYOCYTES

Synthesis


WHAT ARE THE ORAL PHARMACOLOGICAL **OPTIONS?**

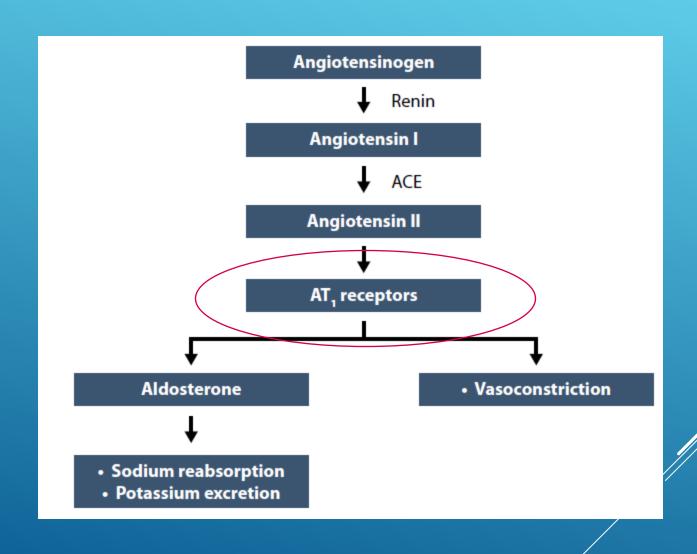
WHAT ARE THE ORAL PHARMACOLOGICAL OPTIONS?

ACEIS: HOW THEY WORK - RAAS

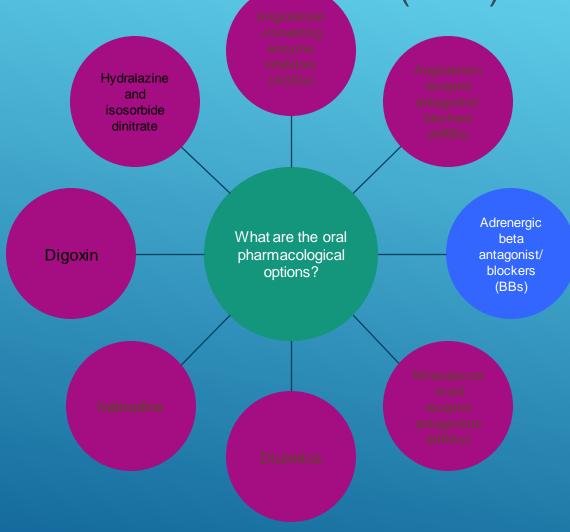
ACEIS: RISKS

Hypotensi on

Worsenin g renal function



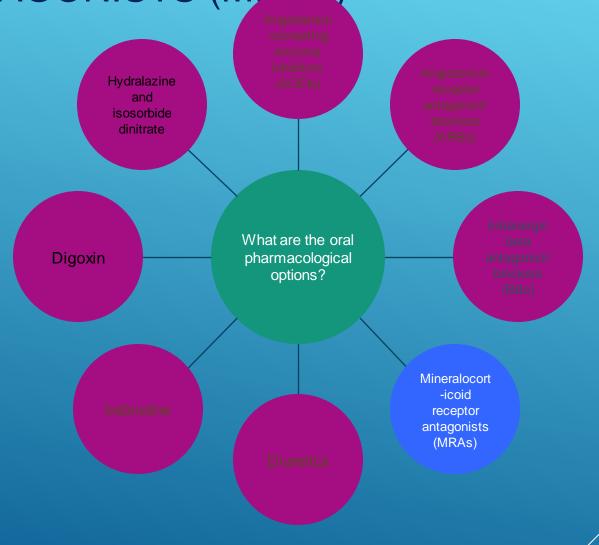
Raised potassium levels



Persistent cough

ARBS: HOW THEY WORK - RAAS

ADRENERGIC BETA ANTAGONIST/BLOCKERS (BBS)



BETA BLOCKERS: RISKS (1)

Side effects (excluding rare and very rare)	Bisoprolol	Carvedilol	Nebivolol
Bronchospasm	✓	✓	✓
Gastrointestinal disturbance	✓	✓	✓
Bradycardia	✓	✓	✓
Headache	✓	✓	✓
Fatigue	✓	✓	✓
Dizziness	✓	✓	✓
Paraesthesia	✓	✓	✓
Heart failure	✓		✓
Hypotension	✓	✓	✓
Conduction disorders	✓		✓
Peripheral vasoconstriction, e.g. claudication and Raynaud's	✓		✓
Dyspnoea	✓	ò	✓
Sleep disturbances	✓		✓
Vertigo	✓		✓
Psychosis	✓		✓
Sexual dysfunction	✓		✓

 δ Postural hypotension. Δ Exacerbation of previous condition. Π Also eye irritation. f Also painful extremities.

MINERALOCORTICOID RECEPTOR ANTAGONISTS (MRAS)

MINERALOCORTICOID ANTAGONISTS (MRAS): THE FACTS

Mechanism of action	Indication	R Types & brands
Inhibit the binding of aldosterone to the mineralocorticoid receptor	Adjunct therapy for patients who continue to demonstrate symptoms of HF despite treatment with both ACEI and BB	1. Spironolactone (Aldactone®)* 2. Eplerenone (Inspra®)**
Dosage	Risks	X Key trials
Both start at relatively low dose, then titrated up according to efficacy and tolerability	Both agents associated with gastrointestinal disturbances, dizziness, electrolyte disturbances, gynaecomastia	RALES (Spironolactone) EMPHASIS-HF (Eplerenone)

^{*}A non-proprietary drug is available

^{**} A non-proprietary drug is not available

DIURETICS

DIURETICS: THE FACTS

Mechanism of action Indication Types & brands Bendroflumenthiazide (thiazide) (Aprinox®, Neo-Thiazide diuretics - inhibit the Naclex®)* reabsorption of sodium in the Patients with HF who are Chlortalidone (thiazidekidney's distal convoluted deemed to have fluid overload tubule related) (Hygroton®)** 3. Furosemide (loop) Loop diuretics - inhibit (Rusyde®, Frusol®)* absorption from the kidney's Bendroflumenthiazide loop of Henle (loop)(Torem®)* Key trials **Risks** Dosage Both types of diuretics Bendroflumenthiazide: 5-10 mg Paucity of trial evidence for the associated with mild daily efficacy of diuretics in HF. gastrointestinal side effects, Chlortalidone: 25-30 mg daily They are recommended for postural hypotension, their beneficial effects on Furosemide: 40 mg mg daily metabolic and electrolyte Bendroflumenthiazide: 5 mg dyspnoea and oedema disturbances, blood disorders daily

- *A non-proprietary drug is available
- ** A non-proprietary drug is not available

IVABRADINE

Acts as a specific bradycardic agent, lowers heart rate by specific action on the sino-atrial node controlled by If current without affecting other cardiac ionic currents. It has no negative inotropic effect and has beneficial effects on left-ventricular systolic dysfunction. The only negative effects are vision disturbances which are mild and transient.

Ivabradine is the first selective sinus node If channel inhibitor that results in a decrease in the slope of the diastolic depolarization in the SA node cells

- It is rapidly and almost completely absorbed after oral administration with a peak plasma level reached in approximately 1 hour under fasting condition.
- The absolute bioavailability of the 10mg dose is around 40%
- No side effects like sexual disturbances, respiratory side effects, bradycardia or rebound phenomena

Indication

Angina pectoris (2005) CHF (2012 in EU, 2015 in US); for use in heart failure patients inadequately controlled with optimal dose of beta-blocker (or intolerant) and whose heart rate is >75 bpm in EU and ≥70 bpm in US

DIGOXIN

DIGOXIN

Cardiac glycoside

Addresses heart failure symptoms by increasing myocardial contraction and reducing conductivity in atrioventricular node

Generally considered for patients with persistent symptoms

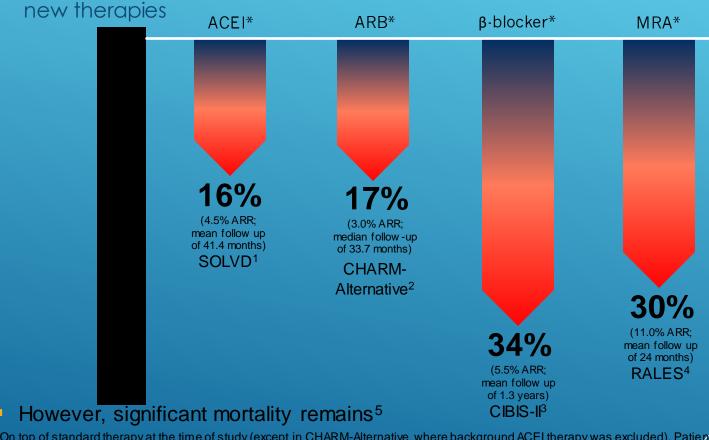
Despite other treatments - ACEI and BB + other agents e.g. spironolactone, ARB, or hydralazine/nitrate

DIGOXIN: THE FACTS

Mechanism of action	Indication	R Brand
Improves the symptoms of HF by increasing myocardial contraction and reducing conductivity in the atrioventricular node	Chronic HF dominated by systolic dysfunction. Its therapeutic benefit is greatest in those patients with ventricular dilatation	Lanoxin®*
Dosage	Side effects	X Key trial
62.5 mg -125 mg once daily	Nausea, vomiting, diarrhoea, arrhythmias, conduction disturbances, dizziness, visual disturbances, rash, eosinophilia and, less commonly, depression	DIG

^{*}A non-proprietary drug is available

HYDRALAZINE AND ISOSORBIDE DINITRATE

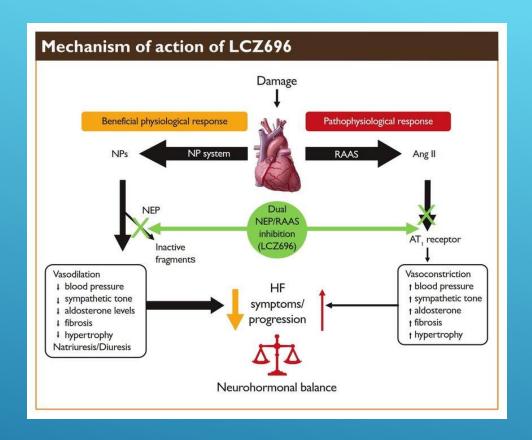

HYDRALAZINE AND ISOSORBIDE DINITRATE: THE FACTS

Mechanism of action	Indication	R Brand
Both have vasodilatory (and hence hypotensive) effects, while nitrate therapy also reduces venous return, thereby lessening the work of the left ventricle	Moderate-severe congestive HF (reduces afterload), where optimal doses of diuretics and cardiac glycosides prove insufficient. In patients with high left ventricular filling pressure, it is recommended to combine hydralazine with a nitrate	Apresoline®*
Dosage	Side effects	X Key trial
25 mg 3-4 times daily, increased every 2 days if necessary. Usual maintenance dose 50-75 mg 4 times daily	Both agents may cause tachycardia, flushing, hypotension, gastrointestinal effects, headache, dizziness	A-HeFT

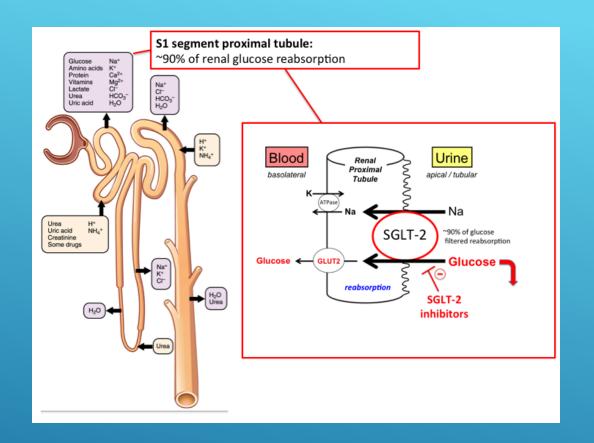
^{*}A non-proprietary drug is available

SUCCESSFUL INTERVENTION BY ADRESSING NEUROHORMONAL ACTIVIATION

Chronic HFrEF survival rates have improved over time with the introduction of



^{*}On top of standard therapy at the time of study (except in CHARM-Alternative where background ACEI therapy was excluded). Patient populations varied between trials and as such relative risk reductions cannot be directly compared. SOLVD (Studies of Left Ventricular Dysfunction), CIBIS-II (Cardiac Insufficiency Bisoprolol Study II) and RALES (Randomized Aldactone Evaluation Study) enrolled chronic HF patients with LVEF <35%. CHARM-Alternative (Candes artan in Heart failure: Assessment of Reduction in Mortality and Morbidity) enrolled chronic HF patients with LVEF <40%.


ARR=absolute risk reduction; MRA=mineralocorticoid receptor antagonist; RRR=relative risk reduction

^{1.} SOLVD Investigators. N Engl J Med 1991;325:293–302; 2. Granger et al. Lancet 2003;362:772–6

^{3.} CIBIS-II Investigators. Lancet 1999;353:9–13; 4. Pitt et al. N Engl J Med 1999;341:709-17; 5. Roger et al. JAMA 2004;292:344–50

ARNI (SACUBITRIL/VALSARTAN)

SGLT2 INHIBITORS

CHF – LEVEL OF RECOMMENDATIONS

Drug Classes

Level of Recommendations (1/2)

ACCF-AHA 2013

ESC 2012

HFSA 2010

NICE 2010

Pł	narmacological therapies	ACCF- AHA 2013	HFSA 2010	ESC 2012	NICE CHF- 2010
A	RNI/ACEI/ARB	IA	A	IA	Α
Ве	eta blockers	IA	Α	IA	Α
Loop diuretics		IC	Α		С
ARBs					
•	In patients who are intolerant to ACEI	IA*	A	IA	Α
•	In patients with persisting symptoms despite treatment with ACEI and BB, who are intolerant MRA	IIb A	-	IA	-
•	Patients with persisting symptoms despite treatment with ACEI and a beta-blocker	-	A	-	√ †
•	Individual ARBs may be considered as initial therapy rather than ACEI for HF patients post-MI	-	A	-	-
M	RAs				
•	Patients with persisting symptoms and EF ≤35%, despite treatment with an ACEI and beta-blocker	-	A [‡]	IA	A #
•	Patients with NYHA class II-IV, LVEF≤35%, in addition to the standard therapy	IA	A**		-

ACEI, angiotensin converting enzy me inhibitor; ARB; angiotensin receptor blocker; BB, beta blockers; EF, ejection fraction; HFrEF heart failure and reduced ejection fraction; HF, heart failure; MI, my ocardial infarction; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart Association.

CHF – LEVEL OF RECOMMENDATIONS

Drug Classes

Level of Recommendations (2/2)

ACCF-AHA 2013

ESC 2012

HFSA 2010

NICE 2010

Pharmacological therapies	ACCF- AHA 2013	HFSA 2010	ESC 2012	NICE CHF- 2010
Digoxin				
In patients with persisting symptoms despite treatment with ACEI/ARB, BB and MRA	IIa B	B/C*	IIb B	A
 In patients with sinus rhythm, EF≤45% who are unable to tolerate a beta-blocker (should be given with ACEI+MRA) 	-	-	IIb B	-
H-ISDN				
In symptomatic African-American patients, NYHA class III-IV, despite optimized standard therapy	IA	A/B [†]	-	√ ‡
 In patients unable to tolerate an ACEI/ARB due to hyperkalemia or renal dysfunction 	lla B	С	IIb B	A
 Patients with persisting symptoms despite optimized standard therapy (ACEI/ARB, beta-blocker and MRA) 	-	С	IIb B	-
Ivabradine				
 In patients with sinus rhythm with an EF ≤35%, HR ≥70 bpm, and persisting symptoms despite treatment with beta-blocker, ACEI and an MRA 	-	-	IIa B	√ ‡#
 Patients with sinus rhythm with an EF ≤35% and a HR ≥70 bpm who are unable to tolerate beta-blocker 	-	-	IIb C	√ ‡#

ACEI, angiotensin converting enzy me inhibitor; ARB; angiotensin receptor blocker; BB, beta blockers; EF, ejection fraction; HF, heaft failure; HR, heart rate; MRA, mineralocorticoid receptor antagonist; MI, my ocardial infarction; NYHA, New York Heart Association;

2021 ESC HF GUIDELINES RECOMMENDATIONS FOR THE MANAGEMENT OF PATIENTS WITH HFREF

Management of patients with HFrEF1

Pharmacological treatments indicated in patients with HFrEF (LVEF ≤40%; NYHA class II—IV)

Recommendations

An ACEi is recommended for patients with HFrEF to reduce the risk of HF hospitalization and death

A BB is recommended for patients with stable HFrEF to reduce the risk of HF hospitalization and death

An MRA is recommended for patients with HFrEF to reduce the risk of HF hospitalization and death

Dapagliflozin / empagliflozin are recommended for patients with HFrEF to reduce the risk of HF hospitalization and death

Sacubitril/valsartan is recommended as a replacement for an ACEi in patients with HFrEF to reduce the risk of HF

hospitalization and death

Class of recommendation	Level of evidence
1	Α
1	Α
1	Α
1	Α
1	В

PHARMACOLOGICAL THERAPY - CHF

Drug Classes

Level of Recommendations

ACCF-AHA 2013 (1/2)

ESC 2012

HFSA 2010

NICE 2010

Stage A

Treatment of

lipid disorders

tobacco use,

· ACEI or ARB in

patients with

disease

 Statins as appropriate

hypertension and

Prevent/treat other

comorbidities such

as obesity, diabetes,

metabolic syndrome

vascular disease or

diabetes mellitus

vascular/coronary

In patients with or without previous history of MI or ACS, LVH and reduced EF:

- ACEI/ARB
- Beta blockers
- Statins
- Control of hypertension

In selected patients:

- ICD*
- Revascularization or valvular surgery

Stage C

- Diuretics
- ACEI/ARB
- · Beta blockers
- MRAs
- Prophylactic anticoagulant therapy

In selected patients:

- H-ISDN
- Digoxin
- CRT
- ICD
- Revascularization or valvular surgery

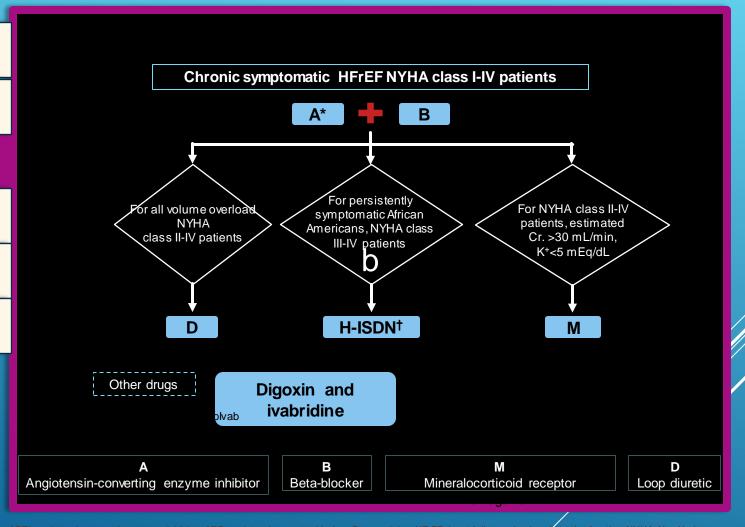
Stage D

- Advanced care measures
- Heart transplant
- Chronic inotropes
- Mechanical circulatory support
- Palliative care and hospice
- · ICD deactivation

ACEI, angiotensin converting enzy me inhibitor; ACS, acute coronary syndrome; ARB; angiotensin receptor blocker; CRT, cardiac resynchronization therapy; EF, ejection fraction; H-ISDN, hy dralazine and isosorbide dinitrate; ICD, implanatable cardioverter-def brillator; LVH, left ventricular hy pertrophy MI, my ocardial infarction; MRA, mineralocorticoid receptor antagonist

PHARMACOLOGICAL THERAPY - CHF

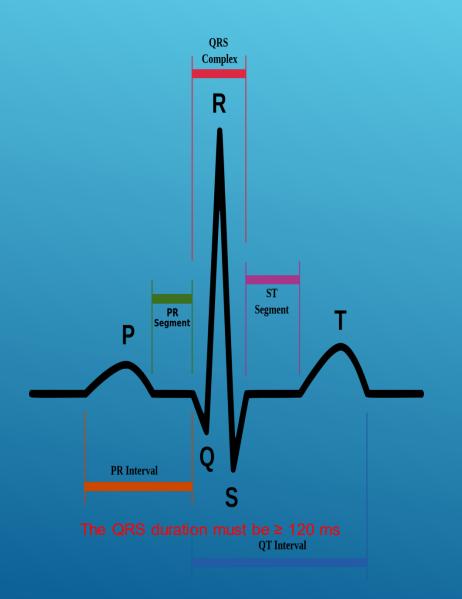
Drug Classes

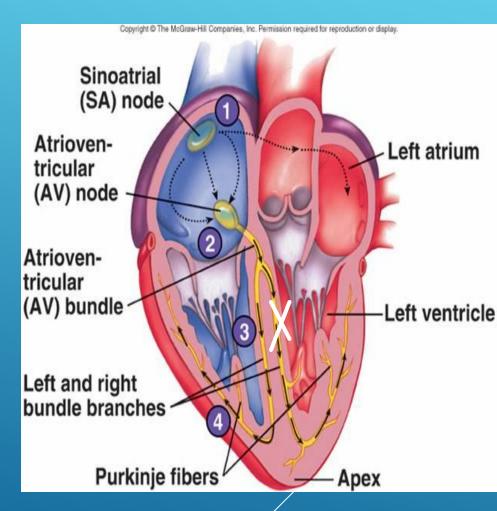

Level of Recommendations

ACCF-AHA 2013 (2/2)

ESC 2012

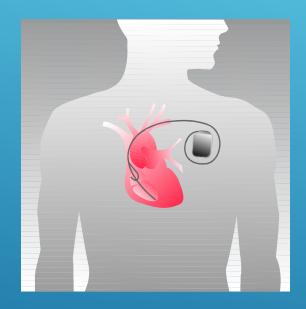
HFSA 2010


NICE 2010



ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; Cr., creatinine; HFrEF, heart failure and reduces ejection fraction; NYHA, New York Heart Association

LBBB


Device implantable inside the body, able to perform both cardioversion, defibrillation and pacing of the heart

Indications

- Ventricular tachycardia and ventricular fibrillation (Secondary prevention)
- Prevention of sudden cardiac death (SCD). Patients with an EF <35% (Primary prevention)

CRT: CARDIAC RESYNCHRONIZATION THERAPY

- 1. Improved hemodynamics
 - ▶ Increased CO
 - Reduced LV filling pressures
 - Reduced sympathetic activity
 - Increased systolic function w/o MVO2
- 2. Reverse LV remodeling/architecture
 - Decreased LVES/ED volumes
 - ▶ Increased LVEF

CRT INDICATION NYC II-IV WITH LBBB

- Improved exercise tolerance
- Reduce symptoms
- Reduced remodeling
- Reduced mortality
- Reduce need for hospitalization rhythm

THANK YOU

