COPD

Ву

Khaled Al Oweidat, MD

Definition

• A heterogeneous lung condition:

Characterized by chronic respiratory symptoms (dyspnea, cough, expectoration and/or exacerbations)

Due to abnormalities of the airways (bronchitis, bronchiolitis) and/or alveoli (emphysema)

□ That cause **persistent**, often **progressive**, airflow obstruction.

Pathogenesis

The airways and air sacs are **elastic or stretchy**:

- When you **breathe in**, each air sac fills up with air, like a small balloon. - When you **breathe out**, the air sacs deflate, and the air goes out.

- In COPD, less air flows in and out of the airways because of one or more of the following:
- The airways and air sacs lose their elastic quality.
- The walls between many of the air sacs are **destroyed**.
- The walls of the airways become thick and inflamed.
- The airways make **more mucus** than usual and can become clogged

Figure 43-3 Overview of the pathogenesis of COPD. Cigarette smoke activates macrophages and epithelial cells to produce chemotactic factors that recruit neutrophils and CD8 cells from the circulation. These cells release factors that activate fibroblasts, resulting in abnormal repair processes and bronchiolar fibrosis. Imbalance between proteases released from neutrophils and macrophages and antiproteases leads to alveolar wall destruction (emphysema). Proteases also cause the release of mucus. An increased oxidant burden resulting from smoke inhalation or release of oxidants from inflammatory leucocytes causes epithelial and other cells to release chemotactic factors, inactivates antiproteases, directly injures alveolar walls, and causes mucus hypersecretion. Several processes are involved in amplifying the inflammatory responses in COPD.

Emphysema is defined as enlargement of the airspaces distal to the terminal bronchioles, due to destruction of the alveolar walls

• Chronic bronchitis is

defined in clinical terms as the presence of cough and sputum production for most days over 3 months for 2 consecutive years.

Epidemiology

- Represents an important public health challenge and is a major cause of chronic morbidity and mortality throughout the world.
- COPD is currently the **3rd leading** cause of death in the world.
- COPD burden is projected to increase in coming decades because of continued exposure to COPD risk factors and aging of the population

- more common in older people, especially those aged 65 years and older.
- The Burden of Obstructive Lung Disease (BOLD) Initiative estimates a worldwide population prevalence of COPD for stages II or higher as equivalent to 10.1 ± 4.8% overall with 11.8 ± 7.9% for men and 8.5 ± 5.8% for women.
- Its associated mortality in women has more than doubled over the past 20 years and now matches that in men.

Proposed Taxonomy (Etiotypes) for COPD

Table 1.1

Classification	Description
Genetically determined COPD (COPD-G)	Alpha-1 antitrypsin deficiency (AATD) Other genetic variants with smaller effects acting in combination
COPD due to abnormal lung development (COPD-D)	Early life events, including premature birth and low birthweight, among others
Environmental COPD	
Cigarette smoking COPD (COPD-C)	 Exposure to tobacco smoke, including <i>in utero</i> or via passive smoking Vaping or e-cigarette use Cannabis
Biomass and pollution exposure COPD (COPD-P)	Exposure to household pollution, ambient air pollution, wildfire smoke, occupational hazards
COPD due to infections (COPD-I)	Childhood infections, tuberculosis-associated COPD, HIV- associated COPD
COPD & asthma (COPD-A)	Particularly childhood asthma
COPD of unknown cause (COPD-U)	
*Adapted from Celli et al. (2022) and Stolz et al. (202	2)

© 2022, 2023 Global Initiative for Chronic Obstructive Lung Disease

Clinical Indicators for Considering a Diagnosis of COPD

Table 2.1

2023

Teaching

Slide Set

Consider the diagnosis of COPD, and perform spirometry, if any of these clinical indicators are present: (these indicators are not diagnostic themselves, but the presence of multiple key indicators increases the probability of the presence of COPD; in any case, spirometry is required to establish a diagnosis of COPD)

Dyspnea that is	Progressive over time
	Worse with exercise
	Persistent
Recurrent wheeze	
Chronic cough	May be intermittent and may be unproductive
Recurrent lower respiratory tract infections	
History of risk factors	Tobacco smoke (including popular local preparations)
	Smoke from home cooking and heating fuels
	Occupational dusts, vapors, fumes, gases and other chemicals
	Host factors (e.g., genetic factors, developmental abnormalities, low birthweight, prematurity, childhood respiratory infections etc.)

© 2022, 2023 Global Initiative for Chronic Obstructive Lung Disease

• In emphysema, the final outcome of the inflammatory responses is elastin breakdown and subsequent loss of alveolar integrity.

- In chronic bronchitis, these inflammatory changes lead to ciliary dysfunction and increased goblet cell size and number which leads to the excessive mucus secretion. These changes are responsible for decreased airflow, hypersecretion, and chronic cough.
- In both conditions, changes are progressive and usually not reversible.

Screening

- No data to show conclusively that screening spirometry is effective in directing management decisions or in improving COPD outcomes in patients who are identified before the development of significant symptoms.
- However, if COPD is **diagnosed at an early** stage and risk factors are eliminated, the rate of decline in lung function will dramatically decrease.
- Screening can be done by asking about smoking history and environmental or occupational exposure. In high-risk populations a screening spirometry should be obtained to document airway obstruction

Primary prevention

- Avoidance of tobacco exposure (both active and passive measures) and toxic fumes are of invaluable importance in primary prevention of COPD.
- All smokers should be offered interventions aimed at smoking cessation, including pharmacotherapy and counselling.
- Although smoking cessation may be associated with minor shortterm adverse effects such as weight gain and constipation, its longterm benefits are unquestionable.

Secondary prevention

- Smoking cessation has the greatest capacity to influence the natural history of COPD.
- Effective resources and time are dedicated to smoking cessation, long term quit **success rates of up to 25%** can be achieved.
- A five-step program for intervention provides a helpful strategic framework to guide health care providers interested in helping their patients stop smoking

Brief Strategies to Help the Patient Willing to Quit

Figure 3.4

2024

Teaching

Slide Set

ASK	Systematically identify all tobacco users at every visit Implement an office-wide system that ensures that, for EVERY patient at EVERY clinic visit, tobacco-use status is queried and documented
ADVISE	Strongly urge all tobacco users to quit In a clear, strong, and personalized manner, urge every tobacco user to quit
ASSESS	Determine willingness and rationale of patient's desire to make a quit attempt. Ask every tobacco user if he or she is willing to make a quit attempt at this time (e.g., within the next 30 days)
ASSIST	Aid the patient in quitting Help the patient with a quit plan; provide practical counseling; provide intra- treatment social support; help the patient obtain extra-treatment social support; recommend use of approved pharmacotherapy except in special circumstances; provide supplementary materials
ARRANGE	Schedule follow-up contact Schedule follow-up contact, either in person or via telephone

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

Counselling:

Counselling delivered by physicians and other health professionals significantly increases quit rates over self-initiated strategies. **Even brief (3minute)** periods of counselling urging a smoker to quit improve smoking cessation rates . There is a relationship between counselling intensity and cessation success.

Diagnosis

- History:
- Early symptoms include:
- Occasional shortness of breath, especially after exercise
- Mild but recurrent cough
- Needing to clear throat often, especially first thing in the morning
- Start making subtle changes, such as avoiding stairs and skipping physical activities.
- Symptoms can get progressively worse and harder to ignore

Diagnosis

-As the lungs become more damaged :

- Shortness of breath, after even **mild** exercise such as walking up a flight of stairs
- Wheezing, which is a type of higher pitched noisy breathing, especially during exhalations
- Chest tightness
- Chronic cough, with or without mucus
- Need to clear mucus from your lungs every day
- **frequent** colds, flu, or other respiratory infections
- lack of energy

Diagnosis

- In later stages of COPD, symptoms may also include:

- Fatigue
- Swelling of the feet, ankles, or legs
- Weight loss

Physical examination

- **Early** in the course of the disease, **no specific** abnormalities may be noted on physical examination.

-Wheezing may or may not be present and does not necessarily relate to the severity of airflow obstruction.

Prolonged expiratory time is a more consistent finding in COPD, particularly as the disease progresses.

 In very severe disease, patients develop physical signs indicative of hyperinflation, including a barrel-shaped chest, decreased breath sounds, distant heart sounds, and increased resonance to percussion.

- Patients may breathe in a "**tripod**" **position** in which the individual learns forward and supports his or her upper body with extended arms.
- Patients with severe disease may also use **pursed-lip breathing**, which involves exhaling through tightly pressed, pursed lips.
- With severe disease, other systemic manifestations may include signs of **cor pulmonale.**
- Tar stains on the fingers from cigarette smoking may be present.

Two commonly recognized <u>COPD subtypes</u> are the "pink puffers" and "blue bloaters."

- **Pink puffers**, typically associated with significant **emphysema**, compensate by hyperventilation and often manifest muscle wasting and weight loss. Compared with blue bloaters, pink puffers are less hypoxemic and therefore appear "pink."
- Blue bloaters typically have chronic bronchitis and tend to have decreased ventilation and greater *ventilation-perfusion* (V/Q) mismatch than pink puffers, leading to hypoxemia and hence cyanosis and to cor pulmonale with edema or "bloating."

Differential Diagnosis of COPD

Table 2.3

Diagnosis	Suggestive Features
COPD	Symptoms slowly progressive
	History of tobacco smoking or other risk factors
Asthma	Variable airflow obstruction
	Symptoms vary widely from day to day
	Symptoms worse at night/early morning
	Allergy, rhinitis, and/or eczema also present
	Often occurs in children
	Family history of asthma
Congestive heart failure	Chest X-ray shows dilated heart, pulmonary edema
	Pulmonary function tests indicate volume restriction, not airflow obstruction
Bronchiectasis	Large volumes of purulent sputum
	Commonly associated with bacterial infection
	Chest X-ray/HRCT shows bronchial dilation
Tuberculosis	Onset all ages
	Chest X-ray shows lung infiltrate
	Microbiological confirmation
	High local prevalence of tuberculosis
Obliterative	Can occur in children
bronchiolitis	Seen after lung or bone marrow transplantation
	HRCT on expiration shows hypodense areas
Diffuse panbronchiolitis	Predominantly seen in patients of Asian descent
	Most patients are male and nonsmokers
	Almost all have chronic sinusitis
	Chest X-ray & HRCT show diffuse small centrilobular nodular opacities & hyperinflation

These features tend to be characteristic of the respective diseases, but are not mandatory. For example, a person who has never smoked may develop COPD (especially in LMICs where other risk factors may be more important than cigarette smoking).

 $\ensuremath{\mathbb{C}}$ 2022, 2023 Global Initiative for Chronic Obstructive Lung Disease

2023 Teaching Slide Set

Differentiating COPD from Asthma

	Asthma	COPD
Onset	Anytime (often childhood or youth)	Later in life
Etiology	Allergic, family history	Smoking, othernoxious exposures
Course	Intermittent	Chronic progressive
Clinical features	Wheeze, episodic dyspnea, cough	Persistent dyspnea, productive cough
Pattern of Symptoms	Variable day to day, more at night/early morning	Less variable, more on exertion
Inflammatory cells and	Eosinophils, mast cells, Th-	Neutrophils, macrophages,
mediators	2 type	Th-1type
Response to	Largely reversible	Partially reversible or
Bronchodilators		irreversible
Response to steroids	Substantial	Partial

CHRONE CH

RUCTIVE

Figure 3 Flow volume curve for a normal subject showing the principal measures used.

Role of Spirometry in COPD

Figure 2.6

- Diagnosis
- Assessment of severity of airflow obstruction (for prognosis)
- Follow-up assessment
 - Therapeutic decisions
 - Pharmacological in selected circumstances (e.g., discrepancy between spirometry and level of symptoms)
 - Consider alternative diagnoses when symptoms are disproportionate to degree of airflow obstruction
 - Non-pharmacological (e.g., interventional procedures)
 - Identification of rapid decline

GOLD Grades and Severity of Airflow Obstruction in COPD (based on post-bronchodilator FEV1)

Figure 2.7

In COPD patients (FEV1/FVC < 0.7):

GOLD 1:	Mild	FEV1 \ge 80% predicted
GOLD 2:	Moderate	$50\% \le FEV1 < 80\%$ predicted
GOLD 3:	Severe	30% ≤ FEV1 < 50% predicted
GOLD 4:	Very Severe	FEV1 < 30% predicted

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

INITIATIV

RUCTIVE

LUNG

CHRONIC OBS

2024 Teaching Slide Set

Modified MRC Dyspnea Scale

Figure 2.8

2024 Teaching Slide Set

PLEASE TICK IN THE BOX THAT APPLIES TO YOU | ONE BOX ONLY | Grades 0 - 4

mMRC Grade 0	mMRC Grade 1	mMRC Grade 2	mMRC Grade 3	mMRC Grade 4
I only get breathless with strenuous exercise	I get short of breath when hurrying on the level or walking up a slight hill	I walk slower than people of the same age on the level because of breathlessness, or I have to stop for breath when walking on my own pace on the level	I stop for breath after walking about 100 meters or after a few minutes on the level	I am too breathless to leave the house or I am breathless when dressing or undressing
Reference: ATS (1982)	Am Rev Respir Dis. Nov;	126(5):952-6.		

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

CAT™ Assessment

For each item below, place a mark (x) in the box that best describes you currently. Be sure to only select one response for each question.

EXAMPLE: I am very happy	0 🗶 2 3 4 5	I am very sad	
l never cough	012345	I cough all the time	
I have no phlegm (mucus) in my chest at all	012345	My chest is completely full of phlegm (mucus)	
My chest does not feel tight at all	012345	My chest feels very tight	
When I walk up a hill or one flight of stairs I am not breathless	012345	When I walk up a hill or one flight of stairs I am very breathless	
I am not limited doing any activities at home	012345	I am very limited doing activities at home	
I am confident leaving my home despite my lung condition	012345	I am not at all confident leaving my home because of my lung condition	
I sleep soundly	012345	I don't sleep soundly because of my lung condition	
I have lots of energy	012345	I have no energy at all	
Reference: Jones et al. ERJ 2009; 34	(3); 648-54.	TOTAL SCORE:	

Figure 2.9

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

Use of CT in Stable COPD

Figure 2.11

2024
Teaching
Slide Set

005

Differential Diagnosis	 Frequent exacerbations with excessive cough with sputum production, raising concern for bronchiectasis or atypical infection Symptoms out of proportion to disease severity based on lung function testing
Lung Volume Reduction	 Endobronchial valve therapy may be a therapeutic option for patients if they demonstrate postbronchodilator FEV1 between 15% to 45% and evidence of hyperinflation Lung volume reduction surgery may be a therapeutic
	option for patients with hyperinflation, severe upper lobe predominant emphysema and low exercise capacity after pulmonary rehabilitation
Lung Cancer Screening	 Annual low-dose CT scan is recommended for lung cancer screening in patients with COPD due to smoking according to recommendations for the general population

 $\ensuremath{\mathbb{C}}$ 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

• Age > 55 • Making history > 30 pack years • Presence of emphysema by CT scan • Presence of airflow limitation FEV1/FVC < 0.7</td> • BMI < 25 kg/m² • Family history of lung cancer

© 2022, 2023 Global Initiative for Chronic Obstructive Lung Disease

Treatment

- Reducing risk factor exposure
- Appropriate assessment of disease

- Patient education
- <u>Pharmacological and non-pharmacological</u> <u>management of stable COPD</u>
- Prevention and treatment of acute COPD exacerbations

Goals for Treatment of Stable COPD Figure 3.1 Relieve Symptoms • Improve Exercise Tolerance **REDUCE SYMPTOMS** • Improve Health Status AND • Prevent Disease Progression Prevent and Treat Exacerbations **REDUCE RISK** Reduce Mortality

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

Nonpharmacological treatment(stable COPD)

- Smoking cessation
- Education , self-management and pulmonary rehabilitation
- Vaccinations
- Nutrition
- End of life and palliative care
- Treatment of hypoxia
- Treatment of hypercapnia
- Intervention bronchoscopy and surgery

Non-Pharmacological Management of COPD*

Figure 3.12

2024
Teaching
Slide Set

Patient Group	Essential	Recommended	Depending on Local Guidelines
A	Smoking cessation (can include pharmacological treatment)	Physical activity	Influenza vaccination COVID-19 vaccinations Pneumococcal vaccination Pertussis vaccination Shingles vaccination RSV vaccination
B and E	Smoking cessation (can include pharmacological treatment) Pulmonary rehabilitation	Physical activity	Influenza vaccination COVID-19 vaccinations Pneumococcal vaccination Pertussis vaccination Shingles vaccination RSV vaccination

*Can include pharmacological treatment

 $\ensuremath{\mathbb{C}}$ 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

Prescription of Supplemental Oxygen to COPD Patients

2024

Teaching Slide Set

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

INITIATI

RUCTIVE

CHRONIC

Pharmacological treatment

- Inhaled B2 agonist(short acting)(SABA)
- Inhaled B2 agonist(long acting)(LABA)
- Inhaled anticholinergic(short acting)(SAMA)
- Inhaled anticholinergic(long acting)(LAMA)
- Inhaled corticosteroid (ICS)
- Combination inhalers
- Methylxanthine
- Phosphodiastrase-4 inhibitor

*Single inhaler therapy may be more convenient and effective than multiple inhalers; single inhalers improve adherence to treatment

Exacerbations refers to the number of exacerbations per year; eos: blood eosinophil count in cells per microliter; mMRC: modified Medical Research Council dyspnea questionnaire; CAT[™]: COPD Assessment Test[™].

CHRONIC

RUCTIVE

SEASE

 $\ensuremath{\mathbb{C}}$ 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

COPD Exacerbation

An event characterized by dyspnea and/or cough and sputum that worsen **over ≤14 days**, which may be accompanied by **tachypnea** and/or tachycardia and is often associated with increased local and systemic **inflammation** caused by airway infection, pollution, or other insult to the airway.

Confounders or Contributors to be Considered in Patients Presenting with Suspected COPD Exacerbation

Figure 4.1

2024

Teaching Slide Set

Most frequent	Pneumonia
	Chest radiograph
	Pulmonary embolism
	 Clinical probability assessment (Hemoptysis, surgery, fracture, history of cancer, DVT)
	• D-dimer
	CT angiography for pulmonary embolism
	Heart failure
	Chest radiograph
	 NT Pro-Brain Natriuretic Peptide (Pro-BNP) and BNP
	Echocardiography
Less frequent	Pneumothorax, pleural effusion
	Chest radiograph
	Thoracic ultrasound
	Myocardial infarction and/or cardic arrhythmias (atrial fibrillation/flutter)
	Electrocardiography
	• Troponin

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

Diagnosis and Assessment

Figure 4.2

2024 Teaching Slide Set

1.	Complete a thorough clinical assessment for evidence of COPD and potential respiratory and non-respiratory concomitant diseases, including consideration of alternative causes for the patient's symptoms and signs: primarily pneumonia, heart failure, and pulmonary embolism.
2.	 Assess: a. Symptoms, severity of dyspnea that can be determined by using a VAS, and documentation of the presence of cough. b. Signs (tachypnea, tachycardia), sputum volume and color, and respiratory distress (accessory muscle use).
3.	Evaluate severity by using appropriate additional investigations such as pulse oximetry, laboratory assessment, CRP, arterial blood gases.
4.	Establish the cause of the event (viral, bacterial, environmental, other).

© 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

Classification of the Severity of COPD Exacerbations

Figure 4.3 **COPD** Patient with Suspected Exacerbation **Confirm ECOPD Diagnosis and Episode Consider Differential Diagnosis** Severity Severity Variable thresholds to determine severity Heart failure Pneumonia Mild (default) Dyspnea VAS < 5 Pulmonary embolism RR < 24 breaths/min HR < 95 bpm Resting $SaO_2 \ge 92\%$ breathing ambient air (or patient's usual oxygen prescription) AND change ≤ 3% (when known) Appropriate testing and CRP < 10 mg/L (if obtained) treatment Moderate Dyspnea VAS ≥ 5 (meets at least RR ≥ 24 breaths/min three of five*) HR ≥ 95 bpm Resting SaO₂ < 92% breathing ambient air (or patient's usual oxygen prescription) AND/OR change > 3% (when known) $CRP \ge 10 mg/L$ *If obtained, ABG may show hypoxemia (PaO₂ \leq 60 mmHg) and/or hypercapnia (PaCO₂ > 45 mmHg) but no acidosis Dyspnea, RR, HR, SaO₂ and CRP same as Severe moderate ABG show new onset/worsening hypercapnia and acidosis (PaCO₂ > 45 mmHg and pH <7.35) **Determine etiology:** viral testing, sputum culture, other Adapted from: The ROME Proposal, Celli et al. (2021) Am J Respir Crit Care Med. 204(11): 1251-8. Abbreviations: VAS visual analog dyspnea scale; RR respiratory rate; HR heart rate; SaO2 oxygen saturation; CRP

Abbreviations: VAS visual analog dyspnea scale; RR respiratory rate; HR heart rate; SaO₂ oxygen saturation C-reactive protein; ABG arterial blood gases; PaO₂ Arterial pressure of oxygen.

 $\ensuremath{\mathbb{C}}$ 2023, 2024 Global Initiative for Chronic Obstructive Lung Disease

2024 Teaching Slide Set

Potential Indications for Hospitalization Assessment*

Figure 4.4

- Severe symptoms such as sudden worsening of resting dyspnea, high respiratory rate, decreased oxygen saturation, confusion, drowsiness
- Acute respiratory failure
- Onset of new physical signs (e.g., cyanosis, peripheral edema)
- Failure of an exacerbation to respond to initial medical management
- Presence of serious comorbidities (e.g., heart failure, newly occurring arrhythmias, etc.)
- Insufficient home support

*Local resources need to be considered

Key Points for the Management of Stable COPD During COVID-19 Pandemic

Figure 6.1

Protective Strategies	 Follow basic infection control measures Wear a face covering Consider shielding/sheltering-in-place Have the COVID-19 vaccinations in line with national recommendations
Investigations	 Only essential spirometry at times of high prevalence of COVID-19
Pharmacotherapy	 Ensure adequate supplies of medications Continue unchanged including ICS
Non-Pharmacological Therapy	 Ensure annual influenza vaccination Maintain physical activity

2024 Teaching Slide Set

