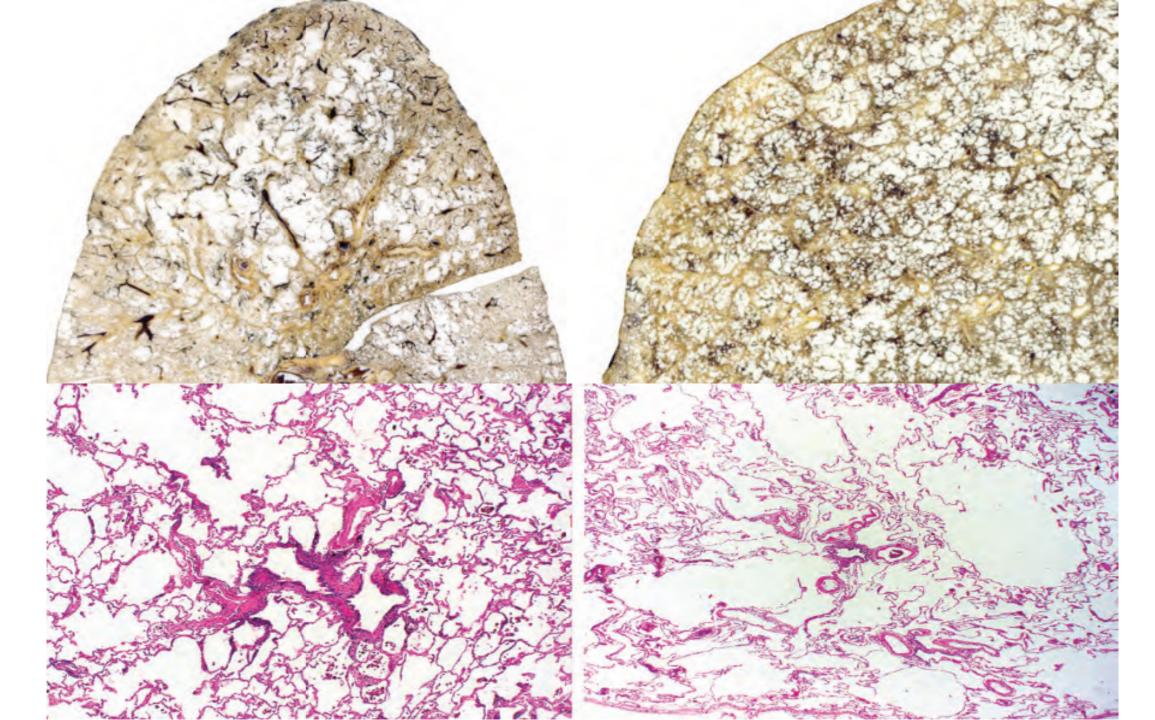
COPD

Content

Definition and diagnosis

Assessment and management


COPD exacerbation

Global Strategy for Diagnosis, Management and Prevention of COPD

Definition of COPD

A heterogeneous lung condition characterized by chronic respiratory symptoms (dyspnea, cough, expectoration and/or exacerbations) due to abnormalities of the airways (bronchitis, bronchiolitis) and/or alveoli (emphysema) that cause persistent, often progressive, airflow obstruction.

Proposed Taxonomy (Etiotypes) for COPD

Figure 1.2

Classification	Description
Genetically determined COPD (COPD-G)	Alpha 1 antitrypsin deficiency (AALD) Other genefic variants with smaller effects acting in combination
COPD due to abnormal lung development (COPD-D)	Farly life events, including premature birth and low birthweight, among others
Environmental COPD	
Cigarette smoking COPD (COPD-C)	 Exposure to tobacco smoke, including in otero or via passive smoking Vaping or e cigarette use Cannabis
Biomass and pollution exposure COPD (COPD-P)	Exposure to household pollution, ambient air pollution, wildfire smoke, occupational hazards
COPD due to infections (COPD-I)	Childhood infections, tuberculosis associated COPD, HIV associated COPD
COPD & asthma (COPD-A)	Particularly childhood asthma
COPD of unknown cause (COPD-U)	

2025

^{*}Adapted from Celli et al. (2022) and Stolz et al. (2022)

Clinical Indicators for Considering a Diagnosis of COPD

Figure 2.1

Consider the diagnosis of COPD, and perform spirometry, if any of these clinical indicators are present:

(these indicators are not diagnostic themselves, but the presence of multiple key indicators increases the probability of the presence of COPD; in any case, spirometry is required to establish a diagnosis of COPD)

Dyspnea that is

Progressive over time

Worse with exercise

Persistent

Recurrent wheeze

Chronic cough

May be intermittent and may be non-productive

Recurrent lower respiratory tract infections

History of risk factors

Tobacco smoke (including popular local preparations)

Smoke from home cooking and heating fuels

Occupational dusts, vapors, fumes, gases and other chemicals

Host factors (e.g., genetic factors, developmental abnormalities, low birthweight, prematurity, childhood respiratory infections etc.)

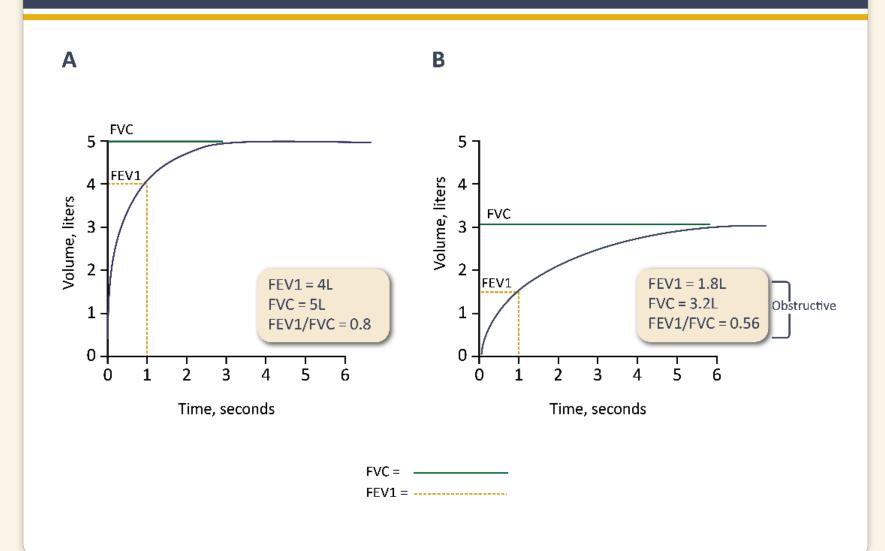
2025

Other Causes of Chronic Cough

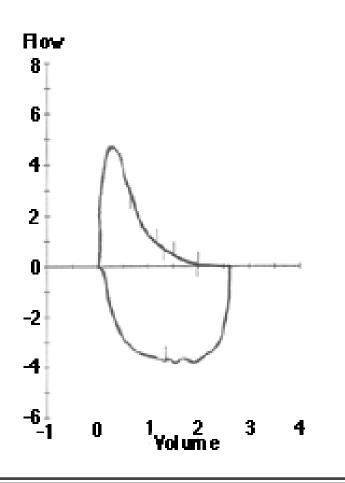
Figure 2.2

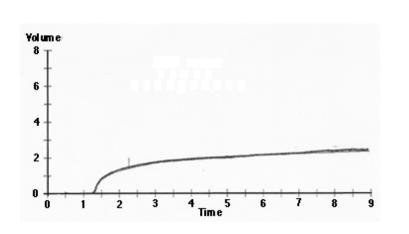
INTRATHORACIC

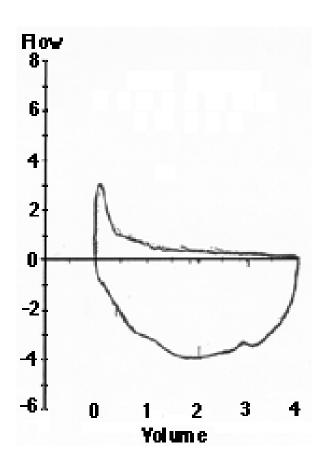
- Asthma
- Lung Cancer
- Tuberculosis
- Bronchiectasis
- Left Heart Failure
- Interstitial Lung Disease
- Cystic Fibrosis
- Idiopathic Cough

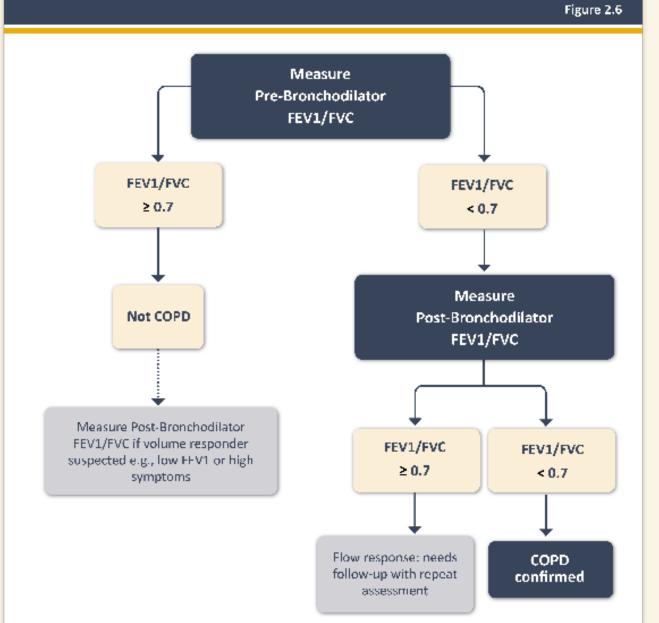

EXTRATHORACIC

- Chronic Allergic Rhinitis
- Post Nasal Drip Syndrome (PNDS)
- Upper Airway Cough Syndrome (UACS)
- Gastroesophageal Reflux
- Medication (e.g., ACE Inhibitors)




Figure 2.5


2025


Airflow obstruction

Mild on left

Severe on right

Teaching Slide Set

Pre- and Post- Bronchodilator Spirometry



Figure 1: COPD chest x-ray (AP view): hyperinflated lung, flattened diaphragm, increased intercostal spaces

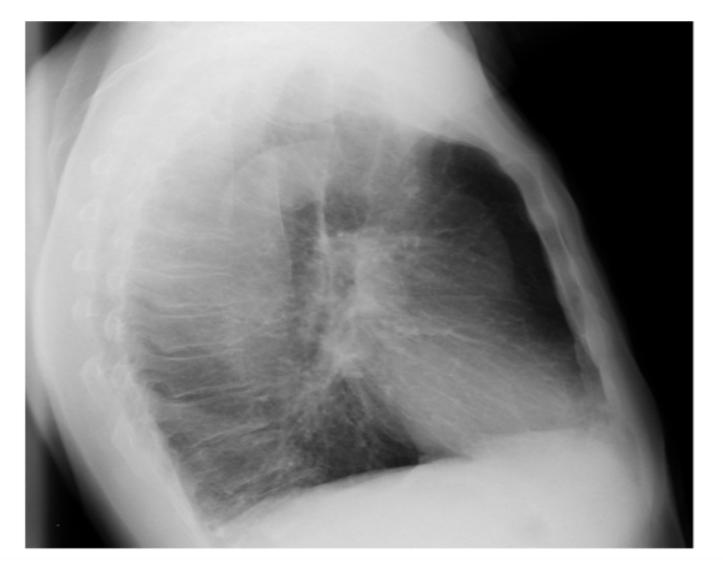


Figure 2: COPD chest x-ray (lateral view): hyperinflated lung, flattened diaphragm, increased antero-posterior diameter (barrel chest) in lateral view

Use of CT in Stable COPD

Figure 2.12

Differential Diagnosis

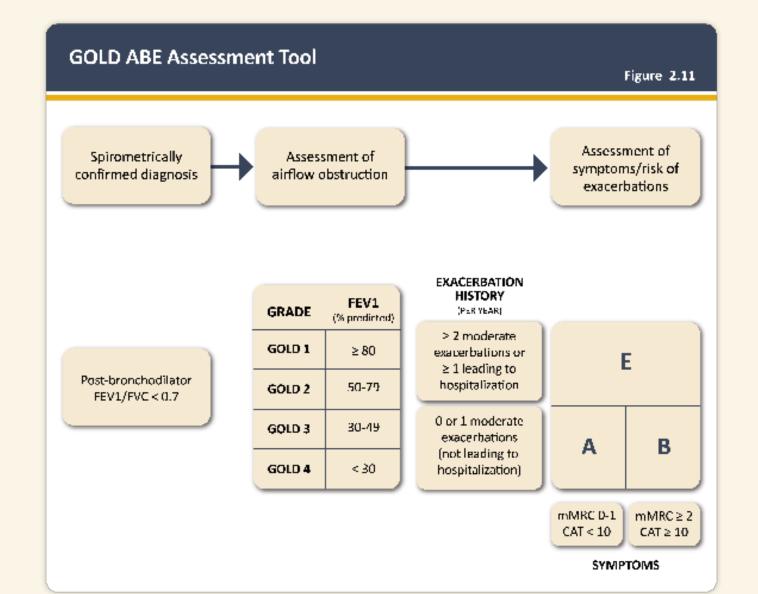
- Frequent exacerbations with excessive cough with sputum production, raising concern for bronchiectasis or atypical infection
- Symptoms out of proportion to disease severity based on lung function testing

Lung Volume Reduction

- Endobronchial valve therapy may be a therapeutic option for patients if they demonstrate postbronchodilator FEV1 between 15% to 45% and evidence of hyperinflation
- Lung volume reduction surgery may be a therapeutic option for patients with hyperinflation, severe upper lobe predominant emphysema and low exercise capacity after pulmonary rehabilitation

Lung Cancer Screening

 Annual low-dose CT scan is recommended for lung cancer screening in patients with COPD due to smoking according to recommendations for the general population



Common Risk Factors for the Development of Lung Cancer

Figure 5.2

- Age > 55 years
- Smoking history > 30 pack years
- Presence of emphysema by CT scan
- Presence of airflow limitation FEV1/FVC < 0.7
- BMI < 25 kg/m²
- Family history of lung cancer

2025

Teaching Slide Set

GOLD Grades and Severity of Airflow Obstruction in COPD (based on post-bronchodilator FEV1)

Figure 2.8

In COPD patients (FEV1/FVC < 0.7):

GOLD 1:	Mild	FEV1 ≥ 80% predicted
GOLD 2:	Moderate	50% ≤ FEV1 < 80% predicted
GOLD 3:	Severe	30% ≤ FEV1 < 50% predicted
GOLD 4:	Very Severe	FEV1 < 30% predicted

Modified MRC Dyspnea Scale

Table 2.7

PLEASE TICK IN THE BOX THAT APPLIES TO YOU | ONE BOX ONLY | Grades 0 - 4

mMRC Grade 0	mMRC Grade 1	mMRC Grade 2	mMRC Grade 3	mMRC Grade 4
I only get breathless with strenuous exercise	I get short of breath when hurrying on the level or walking up a slight hill	I walk slower than people of the same age on the level because of breathlessness, or I have to stop for breath when walking on my own pace on the level	I stop for breath after walking about 100 meters or after a few minutes on the level	I am too breathless to leave the house or I am breathless when dressing or undressing

Reference: ATS (1982) Am Rev Respir Dis. Nov;126(5):952-6.

Reference: Iones et al. LRJ 2009; 34 (3); 648-54.

For each item below, place a mark (x) in the box that best describes you currently. Be sure to only select one response for each question.

EXAMPLE: I am very happy	0 1 2 3 4 5	I am very sad	Score
I never cough	012345	I cough all the time	
I have no phlegm (mucus) in my chest at all	012345	My chest is completely full of phlegm (mucus)	
My chest does not feel tight at all	012345	My chest feels very tight	
When I walk up a hill or one flight of stairs I am not breathless	012345	When I walk up a hill or one flight of stairs I am very breathless	
Lam not limited doing any activities at home	012345	I am very limited doing activities at home	
I am confident leaving my home despite my lung condition	012345	I am not at all confident leaving my home because of my lung condition	
I sleep soundly	012345	I don't sleep soundly because of my lung condition	
I have lots of energy	012345	I have no energy at all	

TOTAL SCORE:

2023
Teaching

Teaching Slide Set

2025

≥ 2 moderate exacerbations or ≥ 1 leading to hospitalization **GROUP E**

LABA + LAMA*

consider LABA+LAMA+ICS* if blood eos ≥ 300

0 or 1 moderate exacerbations (not leading to hospital admission) **GROUP A**

A bronchodilator

GROUP B

LABA + LAMA*

mMRC 0-1, CAT < 10

 $mMRC \ge 2$, $CAT \ge 10$

*Single inhaler therapy may be more convenient and effective than multiple inhalers; single inhalers improve adherence to treatment

Exacerbations refers to the number of exacerbations per year; eos: blood eosinophil count in cells per microliter; mMRC: modified Medical Research Council dyspnea questionnaire; CAT™: COPD Assessment Test™.

Factors to Consider when Initiating ICS Treatment

Figure 3.21

Factors to consider when adding ICS to long-acting bronchodilators:

(note the scenario is different when considering ICS withdrawal)

STRONGLY FAVORS USE History of hospitalization(s) for exacerbations of COPD#

≥ 2 moderate exacerbations of COPD per year*

Blood eosinophils ≥ 300 cells/µL

History of, or concomitant asthma

FAVORS USE

1 moderate exacerbation of COPD per year*

Blood eosinophils 100 to < 300 cells/µL

AGAINST USE

Repeated pneumonia events

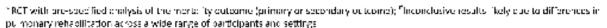
Blood eosinophils < 100 cells/µL

History of mycobacterial infection

*despite appropriate long-acting bronchodilator maintenance therapy (see Figures 3.7 & 3.18 for recommendations); *note that blood eosinophils should be seen as a continuum; quoted values represent approximate cut-points; eosinophil counts are likely to fluctuate.

Adapted from & reproduced with permission of the © ERS 2019: European Respiratory Journal 52 (6) 1801219; DOI: 10.1183/13993003.01219-2018 Published 13 December 2018

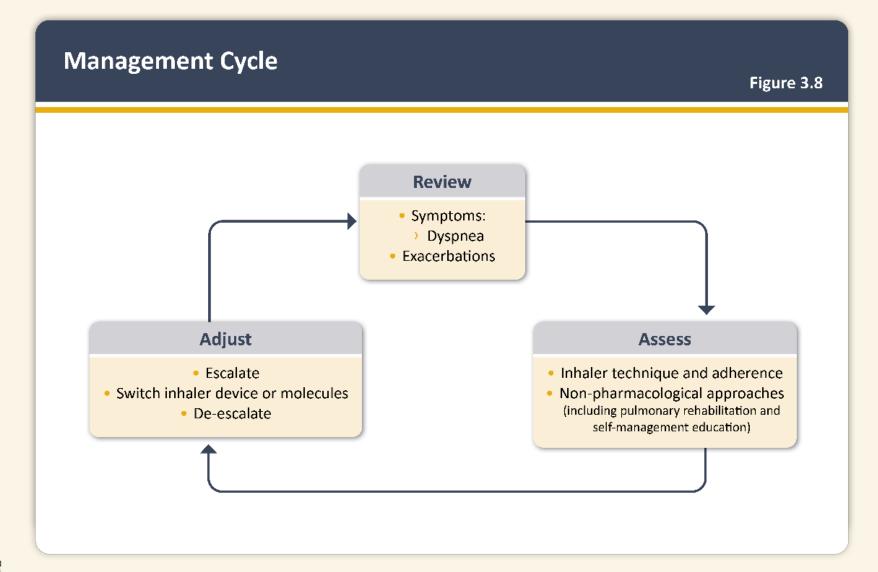
2025


Nonpharmacological treatment(stable COPD)

- Smoking cessation
- Education , self management and pulmonary rehabilitation
- Vaccinations
- Nutrition
- End of life and palliative care
- Treatment of hypoxia
- Treatment of hypercapnia
- Intervention bronchoscopy and surgery

Evidence Supporting a Reduction in Mortality with Pharmacotherapy and Non-pharmacotherapy in COPD Patients Figure 3.17

Therapy	RCT*	Treatment effect on mortality	Patient characteristics
Pharmacotherapy			
LABA+LAMA+ICS ¹	Yes	Single inhaler triple therapy compared to dual LABD therapy relative risk reduction; IMPACT: HR 0.72 (95% CI: 0.53, 0.99) ¹⁴ ETHOS: HR 0.51 (95% CI: 0.33, 0.80) ²⁴	Symptomatic people with a history of frequent and/or severe exacerbations
Non-pharmacologic	cal Thera	ру	
Smoking cessation ²	Yes	HR for usual care group compared to intervention group (smoking cessation) HR 1.18 (95% CI: 1.02, 1.37) ²	Asymptomatic or mildly symptomatic
Pulmonary rehabilitation ^{er}	Yes	Old trials: RR 0.28 (95% Cl 0.10, 0.84)≈ New trials: RR 0.68 (95% Cl 0.28, 1.67)≈	Hospitalized for exacerbations of COPD (during or ≤ 4 weeks after discharge)
Long-lerm oxygen therapy ¹	Yes	NOTT: ≥ 19 hours of continuous oxygen vs ≤ 13 hours: 50% reduction ^{4*} MRC; ≥ 15 hours vs no oxygen; 50% reduction ⁴⁴	PaO ₂ ≤55 mmHg or < 60 mmHg with co <i>r pulmonale</i> or secondary polycythemia
Noninvasive positive pressure ventilation	Yes	12% in NPPV (high IPAP level) and 33% in control HR 0.24 (95% CI 0.11, 0.49)*	Stable COPD with marked hypercapnia
Lung volume reduction surgery ^a	Yes	0.07 deaths/person-year (LVRS) vs 0.15 deaths/ person-year (UC) RR for death 0.47 (μ = 0.005)°	Upper lobe emphysema and low exercise capacity


^{1.} a) IfV PACT trial (Casemetic 1, 2020) and b) ETHOS trials (Martinez et al. 2021); 2. Lung Health Study (Anthonisen et al. 2025); 3. a) Pulsan et al. (2011) and b) Pulsan et al. 2016; 4. a) NOTT (NOTT, 1980) and b) MRC (MRC, 1981); 5. Kohlein trial (Kohlein et al. 2017); 6. NETT trial (Fishman et al. 2003)

ICS Inhaled corticosteroid; IPAP: Inspiratory positive allows pressure; LABA: long-acting beta-regonist; LABD i ong-acting pronchodilator; LAIVIA: long acting ontil muscorinic; ITOE: long term oxygen therapy; NPPV non-avasive positive pressure vanishing; IVKS: lung valume reduction surgery; UC; usual treatment control group.

COPD Exacerbation

An event characterized by dyspnea and/or cough and sputum that worsen **over** ≤14 days, which may be accompanied by **tachypnea** and/or tachycardia and is often associated with increased local and systemic **inflammation** caused by airway infection, pollution, or other insult to the airway.

Confounders or Contributors to be Considered in Patients Presenting with Suspected COPD Exacerbation

Figure 4.1

2025

Teaching Slide Set

Pneumonia

Chest radiograph

Pulmonary embolism

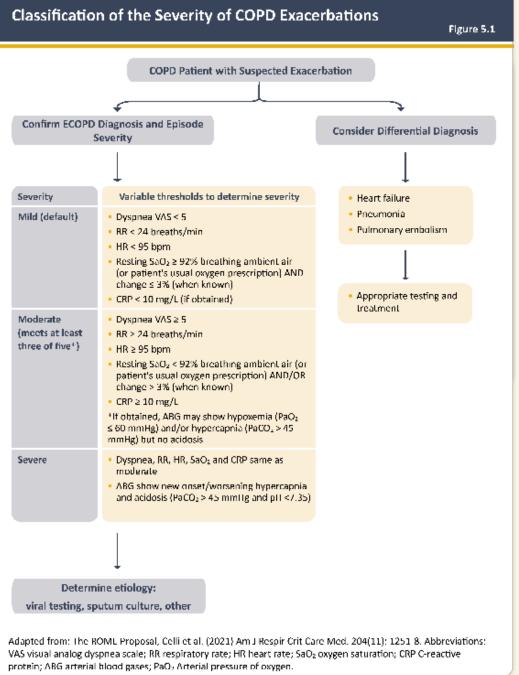
Most frequent

- Clinical probability assessment (Hemoptysis, surgery, fracture, history of cancer, DVT)
- D-dimer
- CT angiography for pulmonary embolism

Heart failure

- Chest radiograph
- NT Pro Brain Natriuretic Peptide (Pro BNP) and BNP
- Echocardiography

Pneumothorax, pleural effusion


- Chest radiograph
- Thoracic ultrasound

Less frequent

Myocardial infarction and/or cardic arrhythmias (atrial fibrillation/flutter)

- Llectrocardiography
- Traponin

2023

Teaching **Slide Set**

CHRONIC

Management of Severe but not Life-threatening Exacerbations*

Figure 4.5

Assess severity of symptoms, blood gases, chest radiograph

Administer supplemental oxygen therapy, obtain serial arterial blood gas, venous blood gas and pulse oximetry measurements

Bronchodilators:

- Increase doses and/or frequency of short-acting bronchodilators.
- Combine short-acting beta 2-agonists and anticholinergies
- Consider use of long-acting bronchodilators when patient becomes stable.
- Use spacers or air-driven nebulizers when appropriate

Consider oral corticosteroids

Consider antibiotics (oral) when signs of bacterial infection are present

Consider noninvasive mechanical ventilation (NIV)

At all times:

- Monitor fluid balance
- Consider subcutaneous heparin or low molecular weight heparin for thromboembolism prophylaxis
- Identify and treat associated conditions (e.g., heart failure, arrhythmias, pulmonary embolism etc.)

1) ocal resources need to be considered.

2025

Indications for Respiratory or Medical Intensive Care Unit Admission*

Figure 4.7

- Severe dyspnea that responds inadequately to initial emergency therapy
- Changes in mental status (confusion, lethargy, coma)
- Persistent or worsening hypoxemia ($PaO_2 < 5.3$ kPa or < 40 mmHg) and/or severe/worsening respiratory acidosis (pH < 7.25) despite supplemental oxygen and noninvasive ventilation
- Need for invasive mechanical ventilation
- Hemodynamic instability need for vasopressors

*Local resources need to be considered.

Thank you