Genetic alterations in gliomas ~

1/ Mutations in IDH. -may occur in <u>IDH1</u> or <u>IDH2</u> genes. observed in: astrocytomas and oligodendrogliomas. -increased production of <u>2-hydroxyglutarate</u> > cells maintained in a stem cell-like state > self-renewal and tumorigenesis.	2/ Co-deletion of 1p and 19q chromosomal segments : present in <i>oligodendrogliomas</i> .
3/ Mutations in the promoter for telomerase : immortalization of tumor cells, eg. <i>glioblastomas</i> .	4/ Other genetic alterations : include mutations that lead to overexpression of the EGF receptor and other receptor tyrosine kinases or disable p53 or RB.

Astrocytoma ~

Classified into two major categories <u>according to their **infiltrative potential**:</u>

1- <u>diffuse</u> (infiltrating) astrocytoma.

<u>Percentage</u>	80% of adult gliomas.	Location	Cerebral hemisphere.	Outcome:
<u>Age at diagnosis</u>	40-60 years old.	Presentation:	seizures, headaches, and focal neurologic deficits related to the anatomic site of involvement.	 static of progressive If the patient shows rapid clinical deterioration, it can be correlated with the appearance of higher-grade component and more rapid tumor growth.

-On the basis of histologic features astrocytomas are stratified into three groups:

Grade	Mean survival	Notes
Grade 2 / diffuse astrocytoma	> 5 years.	 <u>mild to moderate</u> increase in the number of <u>glial cells</u> + fibrillary background made of fine astrocytic cell processes. variable nuclear <u>pleomorphism</u>, however not prominent atypia Mitotic activity is generally absent NO necrosis • NO microvascular proliferation
Grade 3 / anaplastic astrocytoma	2-3 years	 more cellular <u>greater nuclear pleomorphism</u> mitotic figures are present NO necrosis - NO microvascular proliferation
Grade 4 / Glioblastoma	15 months	Lesions can start as Glioblastoma from the beginning or progress from a previous grade 2 or 3 tumors to grade 4 • prognosis is very poor <u>even with treatment</u> (resection, radiotherapy, and chemotherapy).

- Microscopic Features ~

• cellular tumor with nuclear pleomorphism as in anaplastic astrocytoma with either

• Necrosis: irregular zones of necrosis surrounded by dense accumulations of tumor cells (palisading necrosis) or

• microvascular proliferation: the presence of abnormal vessels with walls composed 2 >= layers of vascular wall cells.

- Macroscopic Features ~

- variation in the gross appearance of the tumor from region to region is characteristic (was called glioblastoma multiforme).
- Some areas are firm and white^[1], others are soft and yellow^[2](due to tissue necrosis), others show regions of cystic degeneration^[3] and hemorrhage^[4].

2- circumscribed astrocytic gliomas.

Pilocytic Astrocytoma

Relatively benign, slow-growing, can be treated by resection.

Age at presentation	children and young adults.	Molecular profile:
Location	cerebellum > 3rd ventricle > optic pathways > spinal cord > cerebral hemispheres.	 activating mutations of translocations involving the gene encoding the BRAF, which result in activation of the MAPK signaling pathway. do not have mutations in IDH1 and IDH2, <u>supporting their distinction from the</u> <u>low-grade diffuse gliomas</u>.

- Microscopic Features ~

• bipolar cells with long, thin GFAP positive "hairlike" processes

Rosenthal fibers

>are rounded or elongated, homogenous, and brightly eosinophilic structures within the <u>astrocytic processes</u>, made of clumped intermediate filament proteins, primarily <u>glial fibrillar acidic protein(GFAP +VE)</u> • Can be <u>physiologic (gliosis) or pathologic (PA) and Alexander disease</u>.

• eosinophilic granular bodies

rounded hyaline droplets in the cytoplasm of astrocytes seen in PA and ganglion-cell tumors.

• microcysts are often present

• necrosis and mitoses are rare.

END OF LECTURE 1

Oligodendroglioma ~

Prevalence	5-15% of gliomas.	Location	mostly in the cerebral hemispheres, mainly in the frontal or temporal lobes, white matter.	Treatment and prognosis: • The combination of surgery, chemotherapy,
Age at diagnosis	40-50.	Molecular profile	The presence of IDH mutation and 1p & 19q codeletion is diagnostic for oligodendroglioma.	 and radiotherapy yields an average survival of 10-20 years for WHO grade 2. 5-10 years for WHO grade 3.

**Better prognosis than astrocytoma of the same grade!

Grade 2 Oligodendroglioma • infiltrative tumors • +/- cysts, focal hemorrhage, and calcification. • sheets of regular cells with spherical nuclei containing finely granular chromatin • The nuclei are surrounded by a clear halo of cytoplasm (fried-egg appearance). • delicate network of anastomosing capillaries "chickenwire" • Calcification in 90% of tumors. • Mitotic activity usually is low. • No spontaneous necrosis • No microvascular proliferation
--

Ependymoma ~

**circumscribed glioma!

Location	posterior fossa (60%), supratentorial (30%), spinal (10%)	Age	 In the <u>first 2 decades of life</u>; near the 4th ventricle (post. Fossa) In adults; the spinal cord and supratentorial ependymomas occur with almost equal frequency 	• The clinical outcome for completely resected supratentorial and spinal ependymomas is better than for those in the posterior fossa.
----------	--	-----	--	---

Morphology <mark>~</mark>

*Composed of uniform small cells with round to oval nuclei and granular chromatin in a fibrillary matrix and characterized by:

• Rosette formation:

Ependymal rosettes	<u>diagnostic hallmark</u> of ependymoma (25%) > not that common.		
	- tumor cells arranged around a central canal or lumen that resemble the embryologic ependymal canal , with long, delicate <u>processes extending into a lumen</u> .		
Perivascular pseudorosettes	not specific for ependymoma.		
	- composed of tumor cells radially arranged around <u>vessels</u> with an intervening anucleated zone containing thin ependymal processes.		

- Low cell density and a low mitotic count.
- Cilia and microvilli are seen on ultrastructural examination.

Anaplastic ependymomas ~ increased cell density, high mitotic rates, necrosis, microvascular proliferation, and less evident ependymal differentiation.

Neuronal tumors ~

- <u>less frequent</u> than gliomas
- composed of cells with neuronal characteristics and express neuronal markers, such as synaptophysin and neurofilaments.
- typically, lower-grade lesions BUT often present with seizures.

Examples :]

C <mark>entral</mark> neurocytoma	WHO grade 2	Affects young adults.	<i>low-grade neuronal tumor</i> [not mixed] within and adjacent to the lateral ventricle(s) and/or the third ventricle.
Gangliogliomas	WHO grade 1	Affects children and young adults.	Well-differentiated glioneuronal tumor. Composed of a mixture of neoplastic ganglion and glial cells, most commonly in the temporal lobe.
Dysembryoplastic neuroepithelial tumor (DNT)	WHO grade 1	Affects children and young adults.	<i>low-grade</i> glioneuronal tumor affecting the <u>cerebral cortex</u> . Most commonly in the superficial temporal lobe.

Embryonal (Primitive) Neoplasms ~

• Primitive small round cell tumor of neuroectodermal origin resembling normal progenitor cells in the developing CNS.

Medulloblastoma <mark>[WHO grade 4</mark>]

Epidemiology	The most common CNS	Location	mainly in	Outcome :
	embryonal tumor.		the	-Grade 4 > all are highly malignant / prognosis for untreated patients is : dismal BUT
	• 20% of pediatric brain tumors.		cerebellum.	> radiosensitive.
	-predominantly in children			With total excision, chemotherapy, and irradiation, the 5-year survival rate may be as
				high as 75%.

Morphology ~

• densely cellular, with sheets of anaplastic ("small blue") cells with little cytoplasm and hyperchromatic nuclei • mitoses are abundant.

Homer Wright Rosettes	• primitive tumor cells surrounding central neuropil (delicate pink material formed by <u>neuronal processes</u>).
	 Represents focal neuronal differentiation
	• seen also in neuroblastomas [NOT diagnostic!!]

Pathogenesis ~

•Medulloblastomas are classified according to **molecular characteristics** in addition to **histopathological** features.

•Clinical trials are ongoing that seek to tailor therapy targeted to molecular alterations, with the goal of avoiding radiation therapy when possible.

Oncogenic pathways in Medulloblastoma:

Wnt pathway activation	associated with gain of function mutations in the gene for β -catenin; have the <u>most favorable prognosis</u> of all of the genetic subtypes.
Hedgehog pathway activation	associated with loss of function mutations in PTCH1 (a negative regulator of the Hedgehog); these tumors have an <u>intermediate prognosis</u> , but the concomitant presence of P53 mutation confers a very poor prognosis .
MYC overexpression	due to MYC amplification; these tumors have the <u>poorest prognosis</u> .