Neurophysiology- Organization of Central Nervous System-Introduction- L1

Faisal I. Mohammed, MD, PhD

Objectives

At the end of the lecture students should be able to:

- 1 State the parts of the central nervous system
- ⁽¹⁾Describe the level of organization of the CNS
- ^CList the major functions of the CNS
- Compare the Endocrine system and nervous system
- ⁽¹⁾Describe the anatomy of the functional unit of the nervous system

⁽¹⁾Determine the area of communication in the CNS

Comparison between Nervous and Endocrine Control System

- Nervous system is fast compared to endocrine which is slow
- Nervous system uses Action Potentials compared to chemicals (Hormones) the endocrine system uses
- * Nervous system have low gain compared to very high gain for the Endocrine system $Gain = \frac{Correction}{Error}$
- Nervous system affects skeletal muscle and glands, but the endocrine affects growth, metabolism and reproduction

Organization of Nervous System

Organization of the Nervous System

- Sensory Division
 - tactile, visual, auditory, olfactory
- Integrative Division
 - process information, creation of memory
- Motor Division
 - respond to and move about in our environment

Functional Classes of Neurons

Efferent autonomic nerve pathways consist of a two-neuron chain between the CNS and the effector organ.

Functional Classes of Neurons

- Afferent neurons
 - Inform CNS about conditions in both the external and internal environment
- Efferent neurons
 - Carry instructions from CNS to effector organs muscles and glands
- Interneurons
 - Found entirely within CNS
 - Responsible for
 - Integrating afferent information and formulating an efferent response
 - Higher mental functions associated with the "mind"

Somatosensory Axis of the Nervous System

Skeletal Motor Nerve Axis of the Nervous System

Central Nervous System compared to Computer system

Levels of CNS Function- 3 major levels

1. The spinal cord level

- more than just a conduit for signals from periphery of body to brain and vice versa
- Cord contains:
 - ^(h)walking circuits
 - ^(h) withdrawal circuits
 - ¹ support against gravity circuits
 - Circuits for reflex control of organ function

2. The Lower Brain Level

Contains:

medulla, pons, mesencephalon, hypothalamus, thalamus, cerebellum and basal ganglia

Controls subconscious body activities:

arterial pressure, respiration, equilibrium, feeding reflexes, emotional patterns

3. The Higher Brain or Cortical Level

- Cortex never functions alone, always in association with lower centers
- Large memory storehouse
- Essential for thought processes
- Each portion of the nervous system performs specific functions, but it is the cortex that opens the world up for one's mind.

Anatomy of a Neuron

> 3 major components:

- 1. Soma main body of the neuron
- 2. Axon extends from soma to the terminal the effector part of the neuron
- 3. Dendrite projections from the soma the sensory portion of the neuron

Functional Unit (Neuron)

Communication Between Neurons

Through release of chemical transmitters more than 50 compounds have been identified as transmitter substances

General characteristics of neuronal communication: one-way conduction, always transmits signals in one direction

this allows signals to be directed toward specific goals

