

Human Genetic Variation

Genetics in Medicine - 0504321

2022-2023 Second Semester

Dr. Osama Alsmadi

Chromosomes, Genes & DNA

Somatic cells are diploid - 46 chromosomes

> 22 pairs autosomes; 1 pair sex chromosomes

> Each pair of autosomes is homologous

- Contains the same genes in the same order
- > 1 is maternal, the other is paternal

Chromosome are composed of deoxyribonucleic acid (DNA)

- Genome contains 3 billion base pairs (haploid)
- > ~1% encode proteins
- ➤Genes are located on chromosomes

Genomic Advancements

>The last 10-20 years has seen advances of 'genomic technologies'

Next Generation Sequencing (NGS)

- ➤Whole Genomes
- ➢Whole Exomes (WES)
- ➤Targeted Gene panel

➢Whole Genome Sequencing (WGS)

- Decrease in size of technology
- Improvement in IT and bioinformatics
- Decrease in genomic technology costs

What is Genetics?

Genetics refers to the study of individual genes and their roles in inheritance

There are 3 Billion DNA base pairs in the human genome

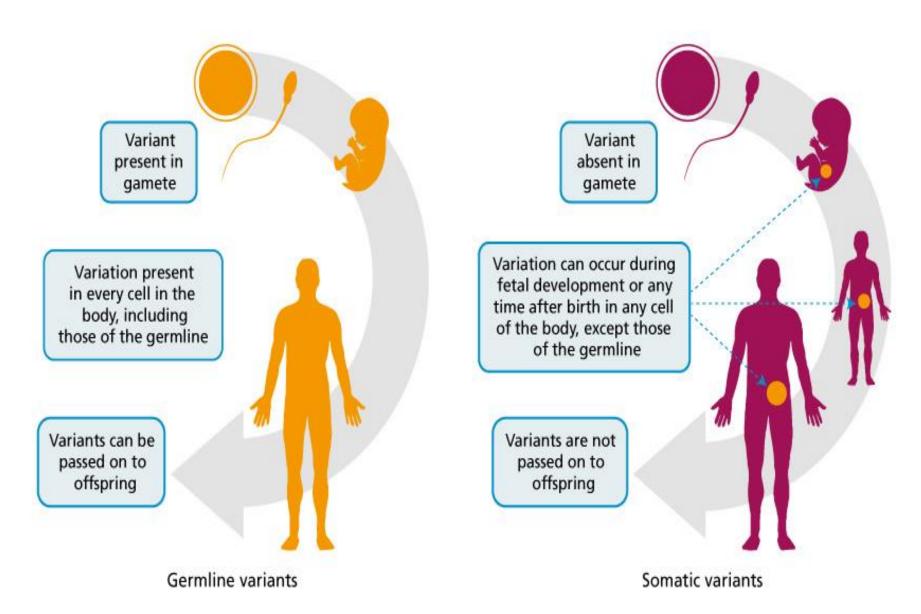
What is Genomics?

Genomics refers to the study of the entire genes, their interactions and functions

Your **genome** is one whole set of all your genes plus all the DNA between your genes.

There are around **20,000** genes in your **genome**

Germline Meanings:


➢In biology and genetics, the germline is the sequence of germ cells with their genetic material that get passed to the offsprings.

➢ Reproductive cells (sperm or the egg), are part of the germline.

Cells that are not in the germline are called **somatic cells**. Example cells of the liver/skin.

➢If there is a mutation in the germline, it will be/can be passed to offspring, however changes in a somatic cell it won't.

Germline/Somatic Variants

Genetic diseases Classification

Three Groups:

▶1. Multifactorial inheritance (polygenic)

▶2. Monogenic (Mendelian)

▶3. Chromosomal aberrations

Disorders with multifactorial inheritance (polygenic)

- >influence of multiple genes plus interplay with environmental factors
- ➢ relatively frequent
- ➢ Diabetes mellitus
- ➢ Hypertension
- Certain congenital heart diseases
- Some types of cancer (ovarian, breast, colon)

➤Can run in families-

- $> 1^{st}$ degree relatives about 5-10%;
- $> 2^{nd}$ degree relatives 0.5-1%

Monogenic (Mendelian) Disorders

Mutation of one gene: Mendelian inheritance
There are more than 5,000 diseases

Autosomal dominant
Autosomal recessive
X-linked

Autosomal Dominant Disorders

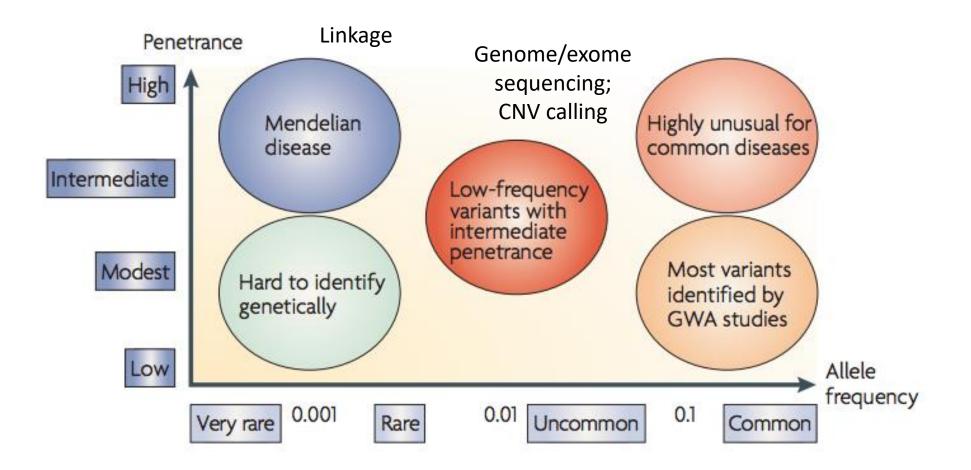
Both Homozygotes And Heterozygotes Are Affected

Usually Heterozygotes (Inherited from one parent)

➢ Males And Females are Affected

➢ Transmitted From One Generation To The Other at 50% rate

Autosomal recessive


- >The majority of Mendelian disorders
- Homozygotes are affected, heterozygotes (parents are carriers)
- ≥25% of descendants can be affected
- ➢if the mutant gene occurs with low frequency high probability in consanguineous marriages
- >Onset of symptoms often in childhood
- Frequently enzymatic defect

X-linked diseases

Transmitted as heterozygous from mother to sons
Daughters: 50% carriers, 50% healthy
Sons: 50% diseased & 50% healthy

Hemophilia A (defect of Factor VIII)
Hemophilia B (defect of Factor IX)
Muscle dystrophy (Duchen disease)

Different Genotyping Methods for Different Types of Variants

Where does Variation come from?

Mutation

random changes to DNA
errors in <u>mitosis</u> & <u>meiosis</u>
environmental damage

➢ Reproduction

➢mixing of alleles

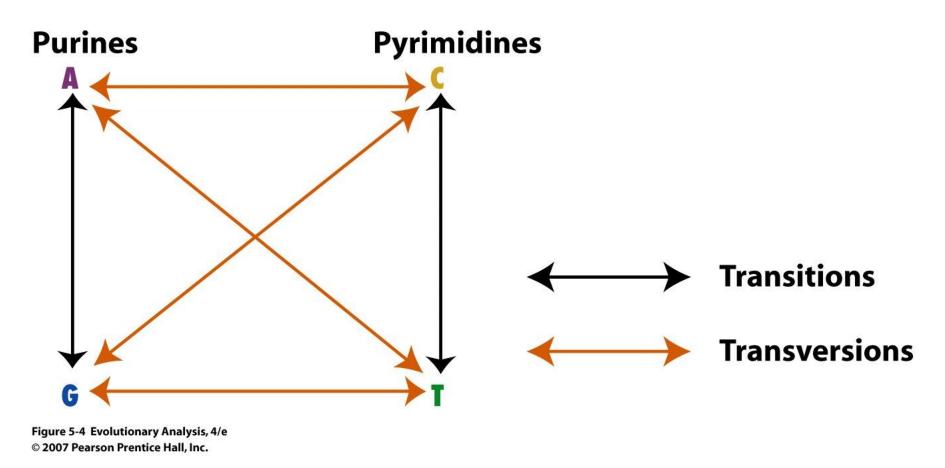
➢<u>recombination</u> of alleles

>new arrangements in every offspring

>new combinations = new phenotypes

➢ spreads variation

>offspring inherit traits from parent

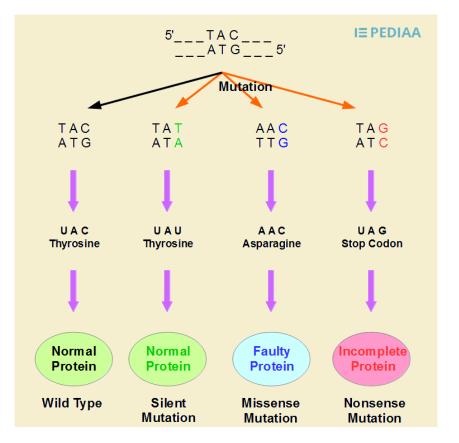

Significance of Mutations

Most mutations are neutral – have little or no effect on the expression of genes or function of proteins

Harmful mutations – leads to defective proteins – disrupt normal biological functions

Cause genetic disorders

Associated with many types of cancer (somatic changes)


Transitions are more common than transversions because DNA repair enzymes can recognize wrong insertion representing a a transition better than a transversion Gene Mutations create changes in DNA sequence, amino acid sequence, and changes in the encoded proteins

Point Mutations

Mutations that affect one nucleotide are called point mutations because they occur at a single point in the DNA sequence

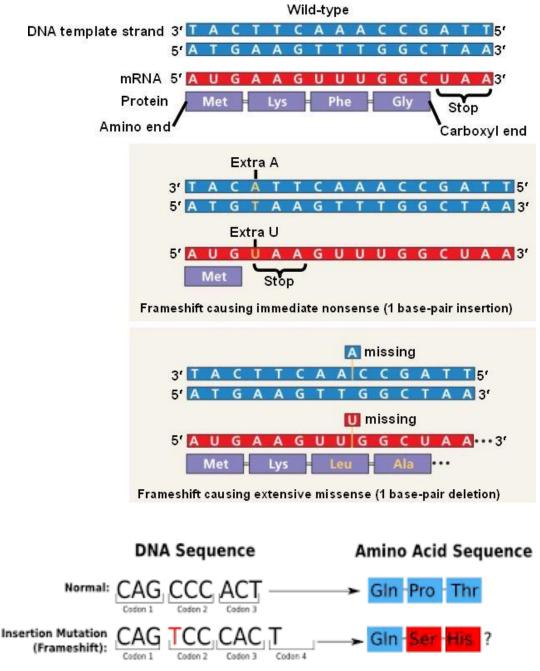
1) Substitutions

- ✓ substitute one nucleotide for another
- ✓ change one of the amino acids in a protein

From Genes to Proteins via mRNA

- Proteins consist of polypeptide chains made of amino acids
- There are 20 amino acids
- ➤Genetic code
 - > 64 combinations of 3 bases called codons
 - > There are three **stop codons**:
 - (UAA, UGA, UAG)
- ➢Genetic code is degenerate
- ➤Genetic code is universal

Second base First							Third		
base	-	U		c		A			base
U	UUU UUC UUA UUG	Phenylalanine Phenylalanine Leucine Leucine	UCU UCC UCA UCG	Serine Serine Serine Serine	UAU UAC UAA UAG	Tyrosine Tyrosine Stop Stop	UGU UGC UGA UGG	Cysteine Cysteine Stop Tryptophar	
c	CUU CUC CUA CUG	Leucine Leucine Leucine Leucine	CCU CCC CCA CCG	Proline Proline Proline Proline	CAU CAC CAA CAG	Histidine Histidine Glutamine Glutamine	CGU CGC CGA CGG	Arginine Arginine Arginine Arginine	
A	AUU AUC AUA AUG	Isoleucine Isoleucine Isoleucine Start (Methionine)	ACU ACC ACA ACG	Threonine Threonine Threonine Threonine	AAU AAC AAA AAG	Asparagine Asparagine Lysine Lysine	AGU AGC AGA AGG	Serine Serine Arginine Arginine	
G	GUU GUC GUA GUG	Valine Valine Valine Valine	GCU GCC GCA GCG	Alanine Alanine Alanine Alanine	GAU GAC GAA GAG	Aspartic Acid Aspartic Acid Glutamic Acid Glutamic Acid	GGU GGC GGA GGG	Glycine Glycine Glycine Glycine	


Figure 5-3b Evolutionary Analysis, 4/ © 2007 Pearson Prentice Hall, Inc.

Frameshift Mutations

Insertions or deletions

✓ Shift the "reading frame" of genetic code.

 ✓ May change every amino acid that follow the point of mutation altering the protein so it is unable to perform its normal function

Codon 3

Codon 4

Insertion Mutation (Non-frameshift)

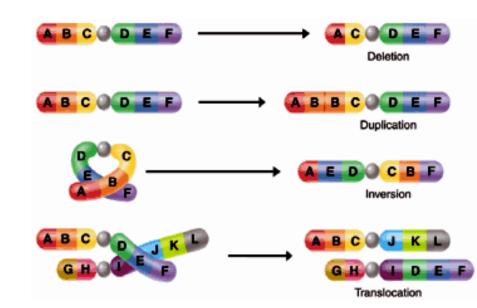
Chromosomal Mutations

1. Deletions

Involve loss of all or part of a chromosome

2. Duplications/Additions

Produce extra copies of parts of a chromosome


e.g. Fragile X syndrome

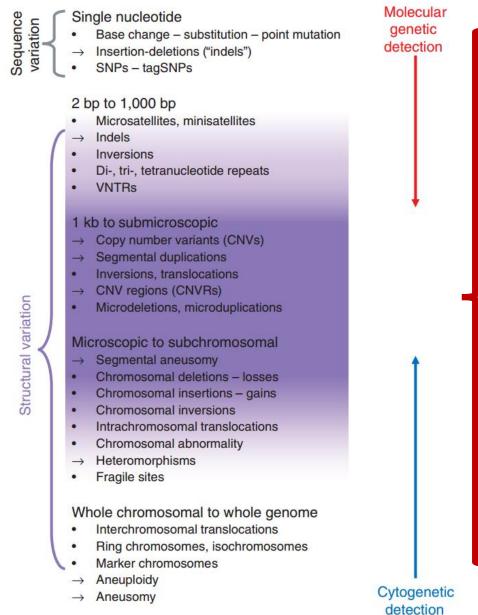
3. Inversions

Reverse direction of parts of chromosomes

4. Translocations

When part of one chromosome breaks off and attaches to another

5. Non Disjunction during meiosis, a pair of chromosomes do not separate & a gamete has one more chromosome while the other has one less


Human Genetic Variation

Single nucleotide polymorphisms (SNPs)

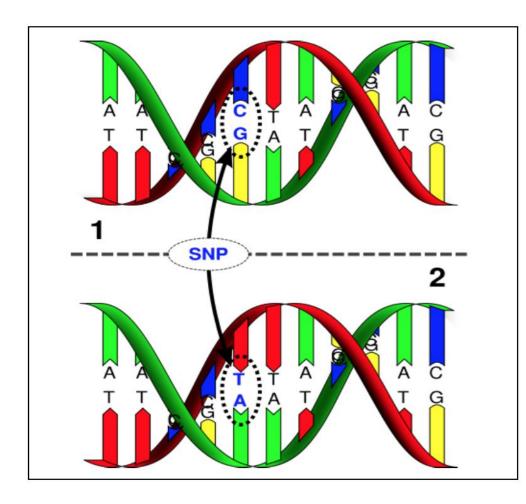
- ➤Tandem repeat Sequences
 - Microsatellites (<8 bp)</p>
 - Minisatellites (VNTRs; 8-100 bp)
- ➢Copy number variants (CNVs; 1Kb − 1Mb)
- Insertions deletions (indels; 100bp 1Kb)

These size limitations are arbitrary

Genetic variation across size spectrum

(Scherer, Nature Genetics, 2007)

Sequencing

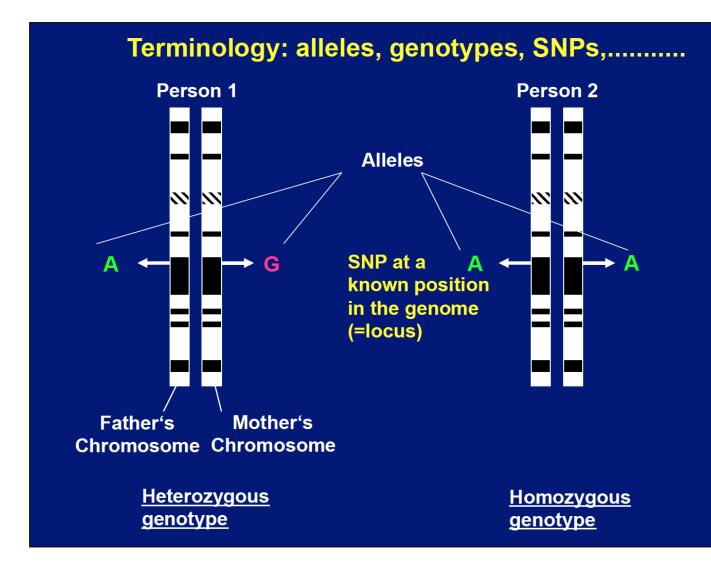

Generation

Next

SNPs

- ➤~10 million SNPs in nay given human genome & counting
- > The most common type of genetic variation
- ≥2 alleles; e.g., A \rightarrow T
- >Occurs across the entire genome & in stable regions
- Many SNPs are in linkage disequilibrium (LD)
 - SNPs close together are more likely to travel together in a block
 - Can use 1 'tag' SNP per block cost effective for GWAS

Terminology



C-allele: 70% frequency C = major allele

T = minor allele

Terminology

If allele **G** is associated with risk for disease, it is the **risk allele.**

Allele A the **protective** allele (WT)

Genetic Variation Databases

Database	Content	Address
dbSNP	SNPs covering the human genome	http://www.ncbi.nlm.nih. gov/projects/SNPs
НарМар	Catalog of variants from HapMap Project	http://hapmap.org
1000 Genome Project	Extension of HapMap – aim to catalog 95% of variants with 1% freq	www.1000genomes.org
UCSC Genome Bioinformatics	Reference human genome sequence with annotation	http://genome.ucsc.edu
Ensembl	Genome browser, annotation, comparative genomics	http://www.ensembl.org/ index.html

Genetic Variation Databases

Database	Content	Address
GeneCards	Database of human genes linked to relevant databases	http://www.genecards.org
PharmGKB	SNPs involved in drug metabolism	http://www.pharmgkb.org
DGV	Database of Genomic Variants, including CNV	http://projects.tcag.ca/vari ation
SCAN	SNP & CNV annotation based on gene function & expression	http://www.scandb.org/ne winterface
OMIM	Online Mendelian Inheritance in Man – over 12,000 genes	http://www.ncbi.nlm.nih.g ov/sites/entrez?db=omim

Genetic Variation Databases

Database	Content	Address
HuGE navigator	Human genome epidemiology knowledge base	http://hugenavigator.net/H uGENavigator/home.do

Best Pract Res Clin Endo Metab, 2012. 26:119.

Collecting DNA

- Sources of DNA
 - Blood samples
 - Buccal brushes
 - Saliva samples
 - Dried blood spots
- Depends on
 - Conditions at time of collection
 - Resources available to process samples
 - What other biological samples will be collected
 - Long & short term storage
 - Quality control

Saliva vs. Blood Samples

Considerations

- Lower cost
- More convenient & acceptable to patients
- Increases compliance
- Lower mean yield of DNA with comparable quality
- No difference in success from high throughput genotyping

Thank you!