

The science of

Mystery

10 Interesting Facts About The Human Brain

1. The human brain weighs 3 pounds
2. It comprises 60% of fat and is one of the fattest organs in the human body
3. Human brain has the capacity to generate approximately 23 watts of power when awake.
4. Of the total blood and oxygen that is produced in our body, the brain gets 20% of it.
5. When the blood supply to the brain stops, it is almost after 8-10 seconds that the brain starts losing the consciousness.
6. The brain is capable of surviving for 5 to 6 minutes only if it doesn't get oxygen after which it dies.
7. The blood vessels that are present in the brain are almost 100,000 miles in length.
8. There are 100 billion neurons present in the brain.
9. In early pregnancy, the neurons develop at an alarming rate of 250,000 per minute.
10. As we grow older, we are unable to remember new things. According to the researchers in the US it is because the brain is unable to filter and remove old memories which prevent it from absorbing new ideas.

THE NERVOUS SYSTEM (NS)

It is divided into $\mathbf{2}$ major divisions:

1) Central Nervous System (CNS): found within bones \& consists of:

* The Brain: within the skull
* The spinal cord: within the vertebral canal.

2) Peripheral Nervous System (PNS): Consists of:
A) Autonomic nervous system: which is divided into:

* Sympathetic nervous system.
* Parasympathetic nervous system.
B) Somatic nerves:
* Cranial nerves (12 pairs): Connected to the brain.
* Spinal nerves (31 pairs): Connected to the spinal cord.

THE NERVOUS SYSTEM

CNS

BRAIN

Cerebrum
Cerebellum
Brain Stem

SPINAL CORD
31 spinal segments

- 8 cervical
- 12 Thoracic
- 5 Lumbar
-5 Sacral
-1 Coccygeal

PNS

SNS
Sympathetic Spinal nerves
Parasympathetic Cranial nerves

Histology of the Nervous

System

Dr Maha ELBeltagy

THE NERVOUS TISSUE

-The functional unit of the nervous tissue is the neuron which is formed of cell body + its processes (an axon \& dendrites)

- In addition to neurons the nervous tissue contains Glial cells

The Neuron

Shape:
1)Unipolar or pseudounipolar Unipolar: dendrite and axon emerge from same point.
1)Bipolar: axon and single dendrite on opposite ends of a spindle shaped body 2)Multipolar: with one axon \& many dendrites

Types of Neurons

Bipolar

Multipolar

Functional Classification of Neurons:

1) Afferent (sensory) neurons: convey information from tissues and organs into the central nervous system (CNS).
2) Efferent (motor)neurons: transmit signals from the CNS to the effector organs (muscles \& glands).
3) Interneurons: connect neurons within specific regions of the CNS.

The body of neuron contains:
The nucleus: Large, round with prominent nucleolus
The cytoplasm: contains the usual organelles + neurofibrils. There is NO centrioles and adult neurons can't divide.

Dendrites

axon

-Multiple
-Carry impulse to the cell body (afferent fibers)
-With wide base \& tapering end
-Give many branches
-Contain neurofibrils \& Nissl granules
-Single
-Carries impulse from the cell body (efferent fiber)
-With the same diameter in all parts
-Give few collaterals
-Contains neurofibrils but No Nissl granules

The nerve fibers

This name is applied to the axons of all nerve cells \& to the dendrite of unipolar cells

Sheaths of nerve fibers

A) Myelin sheath: It is a thin layer of lipoprotein which is interrupted at nodes of Ranvier. It is formed by the neurilemma cells outside the CNS \& by oligodendrocytes inside the CNS. Thickly myelinated fibers transmits impulses faster. It has an insulator or nutritive function
B) Neurilemma (Schwann) sheath: It looks like tubes. In myelinated nerve fibers it forms \& envelops myelin segments. It is important for nerve regeneration after injury.

Dr Maha ELBeltagy

The nerve trunk

- It is formed of bundles of nerve fibers
- The whole nerve is surrounded by CT layer called epineurium
- Each nerve is divided into separate bundles (fascicles)
- Each bundle is surrounded by CT layer called perineurium
- Each nerve fiber is surrounded by CT layer called endoneurium

NERVE GANGLIA

A ganglion is a collection of nerve cells \& nerve fibers surrounded by a CT capsule outside the CNS. It is found along the course of a nerve.

Types:
\square Spinal ganglia
DAutonomic ganglia: sympathetic \& parasympathetic
\square Cranial ganglia

Glial cells

Type	Origin	Location	Main Functions			
Oligodendrocyte	Neural tube	CNS	Myelin production, electric insulation			
Schwann cell	Neural tube	Peripheral nerves	Myelin production, electric insulation			
Astrocyte	Neural tube	CNS	Structural support, repair processes			
Ependymal cell	Neural tube	CNS	Lining cavities of central nervous			
system				$	$	Blood-brain barrier, metabolic
:---:						
Microglia						
Bone marrow						

Astrocytes (astron = star)

- They are star-shaped cells with multiple radiating processes that bind neurons to capillaries and to the pia mater.
- Astrocytes with few long processes are called fibrous astrocytes and are located in the white matter; protoplasmic astrocytes, with many short-branched processes, are found in the gray matter.

Functions:

- Structural support, repair processes

- Blood-brain barrier, metabolic exchanges

THE CENTRAL NERVOUS SYSTEM

It consists of:

1) The brain: Within the skull.
2) The spinal cord: Within the vertebral canal.

THE BRAIN

It consists of:

1) Cerebrum:

- 2 Cerebral hemispheres separated from each other by median fissure
- Diencephalon.

2) Brain Stem:

- Midbrain
- Pons
- Medulla

3) Cerebellum:

- 2 cerebellar hemispheres
- Vermis

On embryological basis the brain is divided into:

1) Forebrain: Consists of * 2 Cerebral hemispheres. * Diencephalon.
2) Midbrain.
3) Hindbrain: Consists of:

* Pons.
* Medulla Oblongata.
* Cerebellum.

Embryonic (developmental) divisions of the Brain

Primary vesicle	Secondary vesicle	Derivatives
Prosencephalon	telencephalon	Cerebral cortex Cerebral white matter Basal ganglia
	diencephalon	Thalamus Hypothalamus Subthalamus Epithalamus
Mesencephalon	mesencephalon	Midbrain
Rhombencephalon	metencephalon	Cerebellum Pons
	myelencephalon	Medulla oblongata
Dr Maha ELBeltagy		

THE CEREBRAL HEMISPHERES

- 4 lines divide each hemisphere into 4 lobes: The central sulcus.
Posterior ramus of lateral fissure.

Imaginary line between Parieto-occipital fissure \& Preoccipital notch.
Imaginary line connecting the posterior ramus of lateral fissure to the previous line.

- Each hemisphere is divided into 4 lobes:
- Frontal lobe.
- Parietal lobe.
- Temporal lobe.

- Occipital lobe.

Components of the cerebral hemisphere

It consists of:

1- Outer grey matter (cerebral cortex)
2- white matter.

1) Basal nuclei
(inner grey matter) 4- Lateral ventricle.

Cerebral Cortex

- Allows for sensation, voluntary movement, selfawareness, communication, recognition, and more.
- Gray matter!
- 40% of brain mass, but only 2-3 mm thick.
- Each cerebral hemisphere is concerned with the sensory and motor functions of the opposite side (contralateral side) of the body.

Layers of the cerebral cortex

Layers	Components	Schematic	Afferents		Efferents
I－ Molecular	Axons and Dendrites（Cell processes）			${ }_{0}^{8}$	To other regions of cortex （Intra－cortical Association functions）
II－External granular	Densely packed Stellate cells＋ Small pyramidal cells			- 들	
III－ External pyramidal	Loosely packed Stellate cells＋ Medium pyramidal cells			$\begin{aligned} & \text { E゙ } \\ & \text { 을 } \end{aligned}$	
IV－ Internal granular	Densely packed Stellate cells only	 亦夫太大丈太		＋From Thalamus	
V－Internal pyramidal	Large pyramidal cells only（few stellate cells）－Giant Pyramidal cells of Betz	$\Delta \Delta \Delta$		＋From Brain stem	To Brain stem \＆Spinal cord （Projection fibers）
VI－ Multiform	Multiple sized pyramidal cells＋ Loosely packed stellate cells				To Thalamus

SURFACES OF THE CEREBRAL HEMEISPHERE

Each hemisphere has 3 surfaces:

- Superolateral surface.
- Medial surface.
- Inferior surface.

- The surfaces of the cerebral hemisphere show elevations called GYRI \& grooves called SULCI.
- Deep sulci are called fissures.
- The surface of the hemisphere is divided into different areas.
- Each area contains a group of cells that perform a specific function.

THE SUPEROLATERAL SURFACE

Important sulci \& gyri:
Central sulcus (of Rolando):

- Extends from the superomedial border at a point a little behind the midpoint between the frontal \& occipital poles. It ends slightly above the middle of the posterior ramus of lateral fissure. Begins on medial surface
Lateral fissure (of Sylvius):
It begins on the inferior surface (stem) lateral to the anterior perforated substance \& extends laterally to reach the lateral surface where it divides into $\mathbf{3}$ branches:
- Anterior ramus: Runs forwards in the inferior frontal gyrus
- Ascending ramus: Ascends in the inferior frontal gyrus.
- Posterior ramus: Runs backwards \& ends by turning upwards in the parietal lobe.

Parieto - occipital fissure: Between Parietal \& occipital lobes.

Sulci \& Gyri of the frontal lobe

- Precentral sulcus: Parallel to \& one finger in front of the central sulcus.
- Superior Frnontal sulcus
- Inferior frontal sulcus

Gyri of the Frontal lobe:
It is divided by the sulci of the frontal lobe into:
A) Precentral gyrus: Between central \& precentral sulci.
B) Superior \& inferior frontal sulci divide the remaining part equally into superior, middle \& inferior frontal gyri

Sulci \& Gyri of the Temporal lobe

- It contains 2 sulci : Superior \& inferior temporal sulci.
- The 2 sulci divide the temporal lobe into 3 gyri: superior, middle \& inferior temporal gyri.

The insula (Island of Reil) $5^{\text {th }}$ loop

- It lies at the bottom of the lateral fissure. It is conical in shape having a base (surrounded by circular sulcus) \& an apex directed inferiorly towards the anterior perforated substance.
- It is divided by sulcus centralis insulae into:
- Anterior part divided into 3-4 short gyri.
- Posterior part with one long gyrus which is usually divided near its upper part.

-Its function is related to taste (gustatory area)

Sulci \& Gyri of the Parietal lobe

- Postcentral sulcus: parallel to \& one finger behind the central sulcus.
- Postcentral gyrus: Between the central \& postcentral sulci.
- Intraparietal sulcus: Begins at the middle of the postcentral sulcus \& divides the remaining part of the parietal lobe into:
- Superior parietal lobule.
- Inferior parietal lobule: Is further divided into:
- Supramarginal gyrus: Above the upturned end of the post ramus of lateral fissure.
- Angular gurus: Above the upturned end of superior temporal sulcus area 39
- Posterior part: Above the upturned end
 of the inferior temporal sulcus

The Occipital Lobe

- Transverse occipital sulcus (lunate)
- Lateral occipital sulcus (horizontal): divides the lateral surface of the occipital lobe into a superior and an inferior gyrus.

Sulci \& Gyri of the medial surface

Callosal sulcus surrounds CC.
Cingulate sulcus runs parallel to CC \& terminates by turning upwards to meet the superomedial border. It gives ascending branch above the middle of the body of CC which divides the area above cingulate sulcus into anterior part: medial frontal gyrus \& paracentral lobule. Ends above as marginal sulcus.

- Cingulate gyrus lies between CC \& cingulate sulcus.
- Subparietal (suprasplenial) sulcus appears as a continuation of cingulate sulcus.
- Parieto-occipital fissure between the parietal \& occipital lobes.
- Calcrine sulcus begins near the occipital pole.
- Cuneus is the wedge area between the parieto-occipital fissure $\&$ the calcrine sulcus. Precuneus lies in front the parieto-occipital fissure Ascending Central sulcus
- Precuneus lies in front the parieto-occipital fissure
- Lingual gyrus below calcrine sulcus. Parieto-occipital

The limbic loop $6^{\text {th }}$ loop

Sulci \& Gyri of the inferior surface of the brain

The inferior surface is divided by the stem of the lateral fissure into a smaller anterior part known as the orbital surface \& a posterior part known as the tentorial surface.

The orbital surface:

The tentorial surface:

- Hippocampal sulcus separates the parahippocampal gyrus from the midbrain.
- Collateral sulcus: below \& parallel to the calcrine sulcus.
- Rhinal sulcus separates the temporal pole from the uncus.
- Occipito -temporal sulcus lies between the medial occipitotemopral or fusiform gyrus which is involved in face recognition \& lateral occipito temporal or inferior temporal gyrus. which is involved in location recognition memory

Morphological Classification of Cortical Areas

* based on cytoarchitectonic studies
* Campbell (1905) -------- about 20 areas
* Brodmann (1909) ------ 47 areas
- most popular
* Vogt and Vogt (1919) - over 200 areas
* von Economo (1929) -- 109 areas

Functional Localization of Cerebral Cortox

Sensory area

primary sensory area (post centeral gyrus)
Lesion : (Contralateral hemianathesia)
secondary sensory area (no marked lesion)
Motor area
primary motor area 4 (precenteral gyrus)
lesion: (Contralateral hemiplagia)
secondary (pre) motor area 6
controls trunk, shoulder and hip big muscles
supplementary motor area (SMA)
lesion (difficulty in coordination and planning of movement)
Association area
parietal, occipital and temporal cortex prefrontal (frontal) cortex - thinking and learning

- judgment, foresight (lesion Alzheimer)

Motor Areas

primary Motor Area (MI) area 4

Premotor Area (PM) area 6
Supplementary Motor Area SMA
Frontal Eye Field area 8
Broca's area of speech area 44,45

Primary Motor Area

MI (area 4)
precentral gyrus of lateral surface anterior part of paracentral lobule giant pyramidal cell of Betz ($5^{\text {th }}$ layer) afferents: premotor area (40\%), SMA, parietal sensory, thalamus

Motor Homunculus

Function: fine specific discrete movement mainly extremities
lesion Upper Motor Neuron (UMN) syndrome (contra lateral hemiplagia)

Dr Maha ELBeltagy

Other Motor Areas

Premotor Area (PM) ------ area 6
(Extrapyramidal center)
afferents: thalamus ,from cerebellum, basal ganglia
Site: in front of area 4 broad above narrow below

Function: storing motor programs ,coordination of coarse movement mainly trunk, shoulders and hip muscles.
Inhibitory to muscle tone

Send inputs to M4
Lesion: motor apraxia, spasticity, loss of postural stability

Supplementary Motor Area (SMA)
Extrapyramidal centre
afferents: thalamus, from basal ganglia
Site: (moslty on the medial frontal gyrus anterior to paracenteral lobule)
Function: postural stabilization
 of the body, the coordination of both sides of the body and the control of sequences of movements.

Lesion: not definite

Frontal Eye Field $-\infty=\infty=-8$

Site: in front of premotor area
mainly middle frontal gyrus

Connected to visual area in occipital lobe.

Function: voluntary tracking
 movement (conjugate movement) to the opposite side
lesion:(deviation of both eyes to same side of lesion)

Motor (Broca's) area of speech 44

Site: inferior frontal gyrus
Mainly on the left dominant hemisphere
Function: coordination of muscles of larynx, mouth, tongue and palate.
Connected to wernicke's area through arcuate fasiculus
Lesion: (motor aphasia) non fluent aphasia

Sensory areas

Primary sensory area $(3,1,2)$

Site: post centeral gyrus Extends on the paracenteral lobule Representation of the body as motor area.
Function: localize, discriminates different sensations.
Gives 20\% of pyramidal tract Lesion: contralateral hemianathesia Secondary sensory area
Lowermost part of postcenteral gyrus (depth of lateral sulcus)

Privinnury sensory aneea

 3,11,2 (femerall! sensathionss.)

Other Sensory Areas

Visual Area (vision)
Auditory Area (Hearing)
Vestibular Area (Equilibrium)
Gustatory Area (Taste)
Olfactory Area (Smell)

Visual Cortex

V I
 17

site: around calcarine sulcus lips (cuneus above and lingual below) receive visual radiations from LGB

Function: visual perception
lesion: contralateral homonymous hemianopia with macular sparing.

V II ---- 18, 19 (visual association area)
Site: remainder of cuneus and lingual gyri
Function: Interpretation of visual stimulus with past experience lesion: visual agnosia and colour blindness

Occipital eye field area (rest of occipital lobe)
Function: reflex conjugate movement of both eyes to opposite side

Face and object recognition areas

Visual association areas

Auditory Areas (Superior temporal gyrus)

A I primary auditory
---- 41, 42
Lesion: hearing defect

All auditory association---- 22
Lesion : auditory agnosia

Auditory Areas (SUPERIor temporal gyrus)

Primary auditory area 41,42

Site: middle of the superior temporal gyrus Function: perception, analysis of pitch, intensity of sound
Lesion: reduction of hearing acuity on both ears mainly on opposite side.

auditory association---- 22

Site: back of superior temporal gyrus along
 with wernicke's area
Function: interpretation of auditory stimulus Lesion: auditory agnosia

Rest of temporal lobe ------memory

Other Primary Sensory Areas

Vestibular Area
[superior temporal gyrus posterior part]
Gustatory Area

> Area 43 (inferior end of postcentral gyrus) +Insula

Olfactory Area
Uncus- piriform area= uncus and adjoining hippocampal gyrus (rhincephalon), smell center

Association Areas

1- Language Areas ----- 22, 39, 40, 44, 45 (next slide)
2- Posterior Parietal Association Area $(5,7)$
body image, know object by feeling it lesion (Asterognosis)
3- Temporal Association Area (22)
temporal lobe
lesion (acoustic or verbal agnosia)
4- Visual association area occipital lobe (19)
lesion visual agnosia
5- Prefrontal Association Area 9, 10, 11, 12
Site: greater part of frontal cortex
Function: judgment, foresight, personality
(Alzheimer) amyloid degeneration and schizophrenia (low dopamine)

Language Areas

Motor Language Area (Broca's area) --- 44, 45

lesion Motor Apahsia (non-fluent aphasia) good comprehension, poor speech

Sensory Language Area (Wernicke's area) ---- 22, 39,40

Site: left dominant hemisphere of superior temporal gyrus

- extending into posterior end of lateral sulcus into parietal lobe
- Connected to broca's area by arcuate fasciculus
- Receives fibers from visual and auditory areas.

Function: Understanding written and spoken words enables person to read and understand

Works in coordination with angular gyrus (39) and supra marginal gyrus (40)

Summary of disorders of Association Cortex

- Agnosia

Tactile agnosia (Asterognosis) site?
Visual agnosia ?
Auditory agnosia?

- Apraxia (posterior parietal damage and or premotor area 6), CC
- Aphasia (types)

1- Wernicke's (sensory or receptive) aphasia
\longrightarrow 2-Broca's (Motor) aphasia (expressive)
$1+2$ global aphasia
3- Conduction aphasia

Apraxia

The inability to execute a voluntary motor movement despite being able to demonstrate normal muscle function .Lesion is mainly due to injury of posterior parietal area or the split brain syndrome due to corpus callosum injury.

More about aphasia.......................Read only

(Fluent aphasia)
Receptive Aphasia - area 22 defect in comprehension, good spontaneous speech (inability to understand spoken, written
Anomic Aphasia - word finding difficulty
Jargon aphasia - fluent, but unintelligible not understood Global aphasia: both broca's and wernicke's.

Superior Longitudinal Fasciculus

lesion: Conduction Aphasia good comprehension, good spontaneous speech poor repetition, poor response

Angular gyrus (39)
Site: around posterior end of superior temporal gyrus
Lesion: Agraphia : inability to write or identify drawn objects Alexia: inability to read
Acalculia: inability to solve small calculations

Speech ana

Broca's area
 Pars Opercularis Pars Triangularis Pars Orbitalis

Language Areas

Eroca'sArea

Pars triangularis and pars opercularis of the inferior frontal gyrus of dominant hemisphere

Photograph of the brain of Broca's patient.

Paul Broca (1824-1880)

Carl Wernicke (1848-1905)

SUMMARY OF THE MAIN

 FUNCTIONAL AREAS OF THE DIFFERENT LOBES OF THE BRAIN
The Frontal lobe:

- Contains motor area (4) which controls muscles of the opposite half of the body. Premotor area (6), Frontal eye field (8) \& Broca's (motor)area for speech $(44,45)$
The parietal lobe:
- Contains the sensory area (3,1,2) for the opposite half of the body.
- Wernicke's area $(39,40,22)$

The temporal lobe:
Contains hearing center $(41,42,22)$. The occipital lobe:
Contains center for vision $(17,18,19)$.

Cerebral Dominance (Lateralization, Asymmetry)

Dominant Hemisphere
Language
speech, writing
Calculation
Non-dominant Hemisphere

Spatial Perception (3D subject)

Singing
Playing musical instrument

Language

Speech
Writing
Calculation

Transected corpus callosum

3D perception

Singing

Playing Musical instrument

Now test yourself

Brain diagram adapted from Pinel, J. P. J. \& Edwards, M. (2008, p.113). A colorful introduction to the anatomy of the human brain: A brain and psychology coloring book. Boston, Massachusetts: Pearson Education.

Label Key: Insert the correct brain term into the picture's label boxes.
...

LOBE TERMS

1. Occipital Lobe
2. Parietal Lobe
3. Temporal Lobe
4. Frontal Lobe

SENSORY CORTEX TERMS
7. Visual Cortex
8. Auditory Cortex
9. Somatosensory Cortex
10. Motor Cortex

SPECLAL FEATURE

TERMS

5. Wernicke's Area
6. Broca's Area
 coloring book. Boston, Massachusetts: Pearson Education.

THANK YOU

