

Medical Genetics Course

Dr. Bilal Azab

The University of Jordan School of Medicine Department of Pathology, Microbiology and Forensic Medicine

Email: b.azab@ju.edu.jo

Lecture link: <u>https://youtu.be/NTUUryj3-qQ</u>

Telomere (TTAGGG)_n

A specialized structure at the ends of eukaryotyic chromosomes. Maintain chromosomal integrity by preventing end-to-end fusion of chromosomes.

Human Sub-telomeric Regions

There is some sequence homology between subtelomeres

Nondisjunction

Failure of:

(1) chromosome pair to disjoin during MI or

(2) chromatids to separate in MII or mitosis.

Abnormal Chromosome Number

- In nondisjunction, pairs of homologous chromosomes do not separate normally during meiosis
- As a result, one gamete receives two of the same type of chromosome, and another gamete receives no copy

Figure 15.13-1

Meiosis I

© 2011 Pearson Education, Inc.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

- Aneuploidy results from the fertilization of gametes in which nondisjunction occurred
- Offspring with this condition have an abnormal number of a particular chromosome

- A monosomic zygote has only one copy of a particular chromosome
- A **trisomic** zygote has three copies of a particular chromosome

Additional (3 rather than 2) chromosome.

Monosomy

One chromosome of a pair missing.

- Polyploidy is a condition in which an organism has more than two complete sets of chromosomes
 - Triploidy (3n) is three sets of chromosomes
 - Tetraploidy (4n) is four sets of chromosomes
- Polyploidy is common in plants, but not animals
- Polyploids are more normal in appearance than aneuploids

Euploid - any chromosome number that is an exact multiple of the number of chromosomes in a normal haploid gamete (n). Most somatic cells are diploid (2N). haploid (1 set), diploid (2 sets), triploid (3 sets), tetraploid (4 sets)

Triploi dy 69,XXY

Alterations of Chromosome Structure

- Breakage of a chromosome can lead to four types of changes in chromosome structure
 - **Deletion** removes a chromosomal segment
 - **Duplication** repeats a segment
 - Inversion reverses orientation of a segment within a chromosome
 - Translocation moves a segment from one chromosome to another

© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

Human Disorders Due to Chromosomal Alterations

- Alterations of chromosome number and structure are associated with some serious disorders
- Some types of aneuploidy appear to upset the genetic balance less than others, resulting in individuals surviving to birth and beyond
- These surviving individuals have a set of symptoms, or syndrome, characteristic of the type of aneuploidy

Incidence of Chromosomal Abnormalities in

Type of Abnormany	<u>Prevalence at Birth</u>					
Sex Chromosome Aneuploidy						
Males (43,612 newborns)						
47,XXY	1/1000					
47,XYY	1/1000					
Females (24,547 newborns)						
45,X	1/5000					
47,XXX	1/1000					
Autosomal Aneuploidy (68,159 new)	<u>borns)</u>					
Trisomy 21	1/800					
Irisomy 18	1/6000					
1risomy 13	1/10,000					
Structural Abnormalities (68 159 ne	awhorns)					
(Sex chromosomes and autosomes)						
Ralanced rearrangements						
Robertsonian	1/1000					
Other (reciprocal and oth	1/1000 $1/885$					
Unbalanced rearrangements	1/17.000					
0						
<u>All Chromosome Abnormalities</u>						
Autosomal disorders and unbalanced rearrangements 1/230						
Balanced rearrangements	1/500					
<u>Total</u>	1/154					

Data from Hsu LYF (1998) Prenatal diagnosis of chromosomal abnormalities through amniocentesis. In Milunsky A (ed.), *Genetic Disorders and the*

Down Syndrome (Trisomy 21)

- Down syndrome is an aneuploid condition that results from three copies of chromosome 21
- It affects about one out of every 700 children born in the United States
- The frequency of Down syndrome increases with the age of the mother, a correlation that has not been explained

@ 2011 Pearson Education, Inc.

Most common numerical abnormality in liveborns is Trisomy 21 (Down syndrome)

Male:Female Ratio -3:2

Mental retardation (IQ 25-50)
*Epicanthic folds

*Low nasal bridge (90%)
Protruding tongue

*Hypotonia (80%)
Intestinal problems

*Up slanting palpebral fissures (80%)
Gap between first and second toes

Small, low-set ears (60%)
15-fold increase in risk for leukemia

*Congenital heart disease (30%-50%)**
*Simian line (transverse transverse transverse

в

1 in 770 babies

PROBABILITY OF GIVING BIRTH TO A BABY WITH TRISOMY 21 BY WOMAN'S AGE

vears

Trisomy

Maternal Errors: 94% of **21** cases MI 64% MII 19% Paternal Errors: 4.5% of cases

- MI 1%
- MII 3.5%

TT	1	~	

Nature Reviews | Genetics

Causal Factors in Nondisjunction

Evaluate the Origin of the Extra Chromosome Using Polymorphic Markers

D21S1432 Tetranucleotide STRP

DNA markers can be used to determine the parental origin of the extra chromosome in trisomic individuals

Trisomy	п	Maternal		Paternal		PZM (%)
		MI (%)	MII (%)	MI (%)	MII (%)	
Acrocentrics						
13	74	56.6	33.9	2.7	5.4	1.4
14	26	36.5	36.5	0.0	19.2	7.7
15	34	76.3	9.0	0.0	14.7	0.0
21	782	69.6	23.6	1.7	2.3	2.7
22	1.30	86.4	10.0	1.8	0.0	1.8
Non-acrocentrics						
2	18	53.4	13.3	27.8	0.0	5.6
7	14	17.2	25.7	0.0	0.0	57.1
8	12	50.0	50.0	0.0	0.0	50.0
16	104	100	0.0	0.0	0.0	0.0
18	1.50	33.3	58.7	0.0	0.0	8.0

*Adapted from Hall et al. (6). MI, meiosis I; MII, meiosis II; PZM, postzygotic mitotic.

Partial Trisomy 21

CHD (95%) Failure to thrive (FTT) Mental retardation Growth retardation Hypertonia Prominent Occiput

Finding

Findings:

CHD (85%) **Mental retardation** Hyper- or hypotonia **Scalp defects Microcephaly Small eyes** Low-set, malformed ears **Cleft lip/palate** Polydactyly and syndactyly ויין ביי בור מ

Trisomy 13 (Patau syndro

