Pulmonary ventilation revision

Fatima Ryalat, MD, PhD

Pulmonary Ventilation Revision Q

- 1. Which of the following lung volumes or capacities can be measured by spirometry?
- (A) Functional residual capacity (FRC)
-(B) Physiologic dead space
- (C) Residual volume (RV)
-(D) Total lung capacity (TLC)
- (E) Vital capacity (VC)

Pulmonary Ventilation Revision Q

- 2. An infant born prematurely in gestational week 25 has neonatal respiratory distress syndrome. Which of the following would be expected in this infant?
- (A) Arterial PO2 of 100 mm Hg
- (B) Collapse of the small alveoli
- (C) Increased lung compliance
- (D) Normal breathing rate
- (E) Lecithin:sphingomyelin ratio of greater than 2:1 in amniotic fluid

Pulmonary Ventilation Revision Q

- 3. A 12-year-old boy has a severe asthmatic attack with wheezing. He experiences rapid breathing and becomes cyanotic. His arterial PO2 is 60 mm Hg and his PCO 2 is 30 mm Hg . To treat this patient, the physician should administer
- (A) an $\alpha 1$-adrenergic antagonist
- (B) a $\beta 1$-adrenergic antagonist
- (C) a $\beta 2$-adrenergic agonist
- (D) a muscarinic agonist
- (E) a nicotinic agonist

Pulmonary Ventilation Revision Q

- 4. Which of the following is true during inspiration?
- (A) Intrapleural pressure is positive
-(B) The volume in the lungs is less than the functional residual capacity (FRC)
- (C) Alveolar pressure equals atmospheric pressure
- (D) Alveolar pressure is higher than atmospheric pressure
- (E) Intrapleural pressure is more negative than it is during expiration

Pulmonary Ventilation Revision Q

- 5. A 35 -year-old man has a vital capacity (VC) of 5 L , a tidal volume (VT) of 0.5 L , an inspiratory capacity of 3.5 L , and a functional residual capacity (FRC) of 2.5 L . What is his expiratory reserve volume (ERV)?
- (A) 4.5 L
-(B) 3.9 L
-(C) 3.6 L
-(D) 3.0 L
-(E) 2.5 L
-(F) 2.0 L
-(G) 1.5 L

Lung volumes

Lung capacities

Pulmonary Ventilation Revision Q

- 6 . Which volume remains in the lungs after a tidal volume (VT) is expired?
- (A) Tidal volume (VT)
- (B) Vital capacity (VC)
- (C) Expiratory reserve volume (ERV)
- (D) Residual volume (RV)
- (E) Functional residual capacity (FRC)
- (F) Inspiratory capacity
- (G) Total lung capacity

Pulmonary Ventilation Revision Q

-7. Which of the following is illustrated in the graph showing volume versus pressure in the lung-chest wall system?

Pulmonary Ventilation Revision Q

- 7. Which of the following is illustrated in the graph showing volume versus pressure in the lung-chest wall system?
- (A) The slope of each of the curves is resistance
- (B) The compliance of the lungs alone is less than the compliance of the lungs plus chest wall
-(C) The compliance of the chest wall alone is less than the compliance of the lungs plus chest wall
- (D) When airway pressure is zero (atmospheric), the volume of the combined system is the functional residual capacity (FRC)
- (E) When airway pressure is zero (atmospheric), intrapleural pressure is zero

Compliance of the lung

Lung and chest wall

Pulmonary Ventilation Revision Q

- 8 . Which of the following is the site of highest airway resistance?
- (A) Trachea
- (B) Largest bronchi
- (C) Medium-sized bronchi
- (D) Smallest bronchi
- (E) Alveoli

Pulmonary Ventilation Revision Q

- 9. Which volume remains in the lungs after a maximal expiration?
- (A) Tidal volume (VT)
-(B) Vital capacity (VC)
-(C) Expiratory reserve volume (ERV)
- (D) Residual volume (RV)
- (E) Functional residual capacity (FRC)
- (F) Inspiratory capacity
-(G) Total lung capacity

Pulmonary Ventilation Revision Q

- 10. A healthy 65 -year-old man with a tidal volume (VT) of 0.45 L has a breathing frequency of 16 breaths $/ \mathrm{min}$. His arterial PCO2 is 41 mm Hg , and the PCO 2 of his expired air is 35 mm Hg . What is his alveolar ventilation?
- (A) $0.066 \mathrm{~L} / \mathrm{min}$
-(B) $0.38 \mathrm{~L} / \mathrm{min}$
-(C) $5.0 \mathrm{~L} / \mathrm{min}$
-(D) $6.14 \mathrm{~L} / \mathrm{min}$
-(E) $8.25 \mathrm{~L} / \mathrm{min}$

Pulmonary Ventilation Revision Q

- 11. In a maximal expiration, the total volume expired is
- (A) tidal volume (VT)
- (B) vital capacity (VC)
- (C) expiratory reserve volume (ERV)
-(D) residual volume (RV)
- (E) functional residual capacity (FRC)
- (F) inspiratory capacity

Flow-volume loops

Flow-volume parameter	Obstructive lung disease	Restrictive lung disease
RV	\uparrow	\downarrow
FRC	\dagger	\downarrow
tic	\uparrow	\downarrow
FEV,	$\downarrow \downarrow$	\downarrow
FVC	\downarrow	\downarrow
FEV//FVC	FEV_{1} decreased more than FVC	Normal or \uparrow FEV_{1} decreased proportionately to FVC

RESTRICTIVE
Loop shifts to the right

Gas exchange

Fatima Ryalat, MD, PhD

Gas exchange

- Gas exchange in the respiratory system refers to diffusion of O 2 and CO 2 in the lungs and in the peripheral tissues.
- O2 is transferred from alveolar gas into pulmonary capillary blood and, ultimately, delivered to the tissues, where it diffuses from systemic capillary blood into the cells.
- CO 2 is delivered from the tissues to venous blood, to pulmonary capillary blood, and is transferred to alveolar gas to be expired.

Boyle's law

- Boyle's law is a special case of the general gas law.
- It states that, at a given temperature, the product of pressure times volume for a gas is constant.
- Thus:
- P1 V1 = P2 V2

Dalton's law of partial pressures

- It states that the partial pressure of a gas in a mixture of gases is the pressure that gas would exert if it occupied the total volume of the mixture.
- Thus, partial pressure is the total pressure multiplied by the fractional concentration of dry gas:
- $\mathrm{Px}=\mathrm{PB}$ X F

Partial pressure

- The relationship for humidified gas is determined by correcting the barometric pressure for the water vapor pressure. Thus:

$$
\mathrm{Px}=\left(\mathrm{Pb}-\mathrm{PH}_{2} \mathrm{O}\right) \times \mathrm{F}
$$

where

$$
\begin{aligned}
\mathrm{PX} & =\text { Partial pressure of gas }(\mathrm{mm} \mathrm{Hg}) \\
\mathrm{PB}_{\mathrm{B}} & =\text { Barometric pressure }(\mathrm{mm} \mathrm{Hg}) \\
\mathrm{PH}_{2} \mathrm{O} & =\text { Water vapor pressure at } 37^{\circ} \mathrm{C}(47 \mathrm{~mm} \mathrm{Hg}) \\
\mathrm{F} & =\text { Fractional concentration of gas (no units) }
\end{aligned}
$$

SAMPLE PROBLEM. Calculate the partial pressure of $\mathrm{O}_{2}\left(\mathrm{PO}_{2}\right)$ in dry inspired air, and compare that value to the PO_{2} in humidified tracheal air at $37^{\circ} \mathrm{C}$. The fractional concentration of O_{2} in inspired air is 0.21 .

SOLUTION. The PO_{2} of dry inspired air is calculated by multiplying the pressure of the mixture of gases (i.e., the barometric pressure) by the fractional concentration of O_{2}, which is 0.21 . Thus in dry inspired air,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{o}_{2}} & =760 \mathrm{~mm} \mathrm{Hg} \times 0.21 \\
& =160 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

The PO_{2} of humidified tracheal air is lower than the PO_{2} of dry inspired air because the total pressure must be corrected for water vapor pressure (or 47 mm Hg at $37^{\circ} \mathrm{C}$). Thus in humidified tracheal air,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{I}_{2}} & =(760 \mathrm{~mm} \mathrm{Hg}-47 \mathrm{~mm} \mathrm{Hg}) \times 0.21 \\
& =713 \mathrm{~mm} \mathrm{Hg} \times 0.21 \\
& =150 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

Dissolved gases

- Henry's law deals with gases dissolved in solution (e.g., in blood). Both O 2 and CO 2 are dissolved in blood (a solution) en route to and from the lungs.
- at equilibrium, the partial pressure of a gas in the liquid phase equals the partial pressure in the gas phase.
- Henry's law is used to convert the partial pressure of gas in the liquid phase to the concentration of gas in the liquid phase (e.g., in blood).

$\mathrm{Cx}=\mathrm{Px} \times$ Solubility

where

$$
\begin{aligned}
\mathrm{Cx}= & \text { Concentration of dissolved gas } \\
& (\mathrm{mL} \text { gas } / 100 \mathrm{~mL} \text { blood) } \\
\mathrm{Px}= & \text { Partial pressure of gas }(\mathrm{mm} \mathrm{Hg})
\end{aligned}
$$

Solubility $=$ Solubility of gas in blood (mL gas/100 mL blood per mm Hg)

Dissolved gases

- it is important to understand that the concentration of a gas in solution applies only to dissolved gas that is free in solution (calculated with Henry's law), and it does not include any gas that is present in bound form (e.g., gas bound to hemoglobin or to plasma proteins).

SAMPLE PROBLEM. If the PO_{2} of arterial blood is 100 mm Hg , what is the concentration of dissolved O_{2} in blood, given that the solubility of O_{2} is 0.003 mL $\mathrm{O}_{2} / 100 \mathrm{~mL}$ blood per mm Hg ?

SOLUTION. To calculate the concentration of dissolved O_{2} in arterial blood, simply multiply the PO_{2} by the solubility as follows:

$$
\begin{aligned}
{\left[\mathrm{O}_{2}\right]=} & \mathrm{PO}_{2} \times \text { Solubility } \\
= & 100 \mathrm{~mm} \mathrm{Hg} \times 0.003 \mathrm{~mL} \mathrm{O}_{2} / 100 \mathrm{~mL} \\
& \text { blood per mm Hg } \\
= & 0.3 \mathrm{~mL} / 100 \mathrm{~mL} \text { blood }
\end{aligned}
$$

Fick's law

- Transfer of gases across cell membranes or capillary walls occurs by simple diffusion.
- For gases, the rate of transfer by diffusion is directly proportional to the driving force, a diffusion coefficient, and the surface area available for diffusion; it is inversely proportional to the thickness of membrane barrier.

$$
\dot{\mathrm{V}} \mathrm{x}=\frac{\mathrm{DA} \Delta \mathrm{P}}{\Delta \mathrm{x}}
$$

where
$\dot{\mathrm{V}} \mathrm{X}=$ Volume of gas transferred per unit time
D = Diffusion coefficient of the gas
A = Surface area
$\Delta \mathrm{P}=$ Partial pressure difference of the gas
$\Delta x=$ Thickness of the membrane

Diffusion of gases

- There are two special points regarding diffusion of gases:
- (1) The driving force for diffusion of a gas is the partial pressure difference of the gas $(\underline{\Delta \mathrm{P}})$ across the membrane, not the concentration difference.
- Thus if the PO 2 of alveolar air is 100 mm Hg and the PO 2 of mixed venous blood that enters the pulmonary capillary is 40 mm Hg , then the partial pressure difference, or driving force, for O 2 across the alveolar/pulmonary capillary barrier is $60 \mathrm{~mm} \mathrm{Hg}(100 \mathrm{~mm} \mathrm{Hg}-40 \mathrm{~mm} \mathrm{Hg})$.

Diffusion of gases

- (2) The diffusion coefficient of a gas (D) is a combination of the usual diffusion coefficient, which depends on molecular weight, and the solubility of the gas.
- The diffusion coefficient of the gas has enormous implications for its diffusion rate, as illustrated by differences in the diffusion rates of CO 2 and O2.
- The diffusion coefficient for $\mathbf{C O 2}$ is approximately 20 times higher than the diffusion coefficient for $\mathbf{O 2}$; as a result, for a given partial pressure difference, CO 2 diffuses approximately 20 times faster than O 2 .

Additional references

- BRS Physiology, Costanzo, $7^{\text {th }}$ edition.
- Harrison's principles of internal medicine, $21^{\text {st }}$ edition.

Thank you

