Cl CIS

\section*{CUS

CUS
 PBL

Writer: Insaf Alammouri
Corrected by: Shahed Atiyat
Doctor: Hanna Maknamreh

HYPERTENSION

Hanna K. Al-Makhamreh,
 MD FACC Associate Professor of Cardiology University Of Jordan

FACTORS INFLUENCING BP

- Heart rate
- Sympathatic/Parasympathatic
- Vasoconstriction/vasodilation

- Fluid volume (regulated by hormones)
- Renin-angiotensin
- Aldosterone
- ADH

HYPERTENSION DIAGNOSIS
in one week

- Diagnosis requires two reading at two different clinic visits
-BP measurement in both arms (2 readings for both arms each visit)
- Use arm with higher reading for subsequent measurements
- Measure BP following 5 min of rest in the sitting position with good back, support alarm
\rightarrow we take the higher reading
ex: rt arm systolic $B P=140$, it arm systolic $=130$
It arm may have atherosclerosis $\rightarrow \downarrow \mathrm{BP}$

Office BP Readings: Checklist for Accurate Measurements

Key Points	Specific Instructions
Step 1: Prepare patient	-Have patient relax, sitting in a chair (feet on floor, back supported) for >5 min. -Avoid caffeine, exercise, and smoking for $\geq 30 \mathrm{~min}$ before measurement. -Ensure bladder emptied. -No talking during rest period or measurement. -Remove clothing covering location of cuff placement. -Measurements while patient sitting/lying on exam table do not fulfill criteria.
Step 2: Use proper technique	-Use validated BP measurement device that is calibrated periodically. -Support patient's arm (e.g., resting on a desk). -Position middle of cuff on patient's upper arm at mid-sternum (right atrium). -Use correct cuff size, such that the bladder encircles 80% of the arm. -Either stethoscope diaphragm or bell may be used for auscultatory readings.
Step 3: Take proper measurements	-At first visit, record BP in both arms. Subsequently, use arm with higherBP. -Separate repeated measurements by 1-2 min. -For auscultatory readings, estimate SBP by palpation and inflate cuff 20-30 mm Hg above. Deflate $\mathbf{2 ~ m m ~ H g ~ p e r ~ s e c o n d ~ a n d ~ l i s t e n ~ f o r ~ K o r o t k o f f ~ s o u n d s . ~}$
Step 4: Document BP readings	-Note time of most recent BP medication before measurements. -Record SBP and DBP.
Step 5: Average readings	-Use average of ≥ 2 readings obtained on ≥ 2 occasions to estimate level of BP.

Whelton PK et al. Hypertension/J Am Coll Cardiol. 2017;Epub ahead of print

CLASSIFICATION OF HYPERTENSION

- Primary (Essential) Hypertension
- Elevated BP with unknown cause
- 90% to 95% of all cases
- Secondary Hypertension
- Elevated BP with a specific cause (treatment of cause resolves Htn)
- 5% to 10% in adults

RISK FACTORS FOR PRIMARY HYPERTENSION

- Age (> 55 for men; > 65 for women)
- Alcohol
- Cigarette smoking
- Diabetes mellitus
- Elevated serum lipids
- Excess dietary sodium
- Gender (O^{7})
- Family history
- Obesity (BMI > 30)
- Ethnicity (African Americans)
- Sedentary lifestyle
- Socioeconomic status
- Stress

CLINICAL MANIFESTATIONS

- Asymptomatic (silent Killer)
- Non-specific symptoms: (if symptomatic)
-Fatigue
-Reduced activity tolerance
-Dizziness
-Palpitations
- End organ damage (ex: ophthalmic)

BASIC AND OPTIONAL LABORATORY TESTS FOR PRIMARY HYPERTENSION

Basic testing	Fasting blood glucose*
	Complete blood count
	Lipid profile
	Serum creatinine with eGFR*
	Serum sodium, potassium, calcium*
	Thyroid-stimulating hormone
	Urinalysis
	Electrocardiogram
Optional testing	Echocardiogram
	Uric acid
	Urinary albumin to creatinine ratio

*May be included in metabolic panel. eGFR indicates estimated glomerular filtration rate.

BP Classification (JNC 7 and ACC/AHA Guidelines)
 ζ now used

SBP		DBP	2003 JNC7	2017 ACC/AHA
<120	and	<80	Normal BP	Normal BP
120-129	and	<80		Elevated BP
130-139	or	80-89	Prehypertension	Stage 1 hypertension
140-159	or	90-99	Stage 1 hypertension	Stage 2 hypertension
≥ 160	or	≥ 100	Stage 2 hypertension	Stage 2 hypertension

- Blood Pressure should be based on an average of ≥ 2 careful readings on ≥ 2 occasions
- Adults with SBP or DBP in two categories should be designated to the higher BP category

Out of Office BP Readings

Greater use of out of office BP measurements (ABPM or HBPM) for confirmation of office hypertension and recognition of White Coat/Masked Hypertension

In adults not taking antihypertensive medication

- Confirmed (Sustained) Hypertension (always 4: at home, work, Clinic)
- Elevated office and out of office average BP
- Substantially higher risk of CVD compared to adults with normal office and out of office BPs
- Require therapy (nonpharmacological or combined nonpharmacological and antihypertensive drug therapy)
- White Coat Hypertension (WCH)
- Office Hypertension not confirmed by out of office BP readings (Only 4 at Clinic)
- Present in about 10-25\% of adults with office hypertension
- CVD risk profile more like adults with normal BP than adults with sustained hypertension
- May not need treatment for hypertension (should be monitored for development of sustained hypertension) \longrightarrow good Drognosis , no end organ damage
- Masked Hypertension (MH)
- Normal office BP but out of office BP hypertension (Stress ed More Out Of Clinic)
- Present in about 10-25\% of adults with normal office BP
- CVD risk profile more like adults with sustained hypertension than adults without hypertension
- Should be considered for antihypertensive drug therapy (like Confirmed $\mathrm{H}+\Lambda$)

HYPERTENSION COMPLICATIONS

End organ damage involves:

- Heart
- Brain
- Kidney
- Eyes

HYPERTENSION COMPLICATIONS

Cardiovascular Disease:

- Coronary artery disease
- Left ventricular hypertrophy
- Diastolic dysfunction
- Heart failure
- Peripheral arterial disease
- Aneurysm and dissection
ventricular hypertrophy happens because there is 4 afterload

Left ventricular hypertrophy

HYPERTENSION COMPLICATIONS

CNS :

- Ischemic stroke
- Hemrrhagic stroke
- Hypertensive Encephalopathy

Kidney :

- Nephrosclerosis
- Major cause for End stage Renal Failure

Ophthalmic :

- Retinal complication including bleeding
\leftrightarrow worst: intracranial bleeding

RESISTANT HYPERTENSION: DIAGNOSIS, EVALUATION, AND TREATMENT
 \leftrightarrow usually $2^{\circ} \mathrm{Htn}$

Whelton PK et al. Hypertension/J Am Coll Cardiol. 2017 [Epub ahead of print].
resistant Htn : persistance of Htn despite medications

* conditions: (1) $\geqslant 3$ different classes of antihypertensives at max dose including a diuretic
(2) $\geqslant 4$ antihypertensives needed to control office Htn
* Usally $2^{\circ} \mathrm{Ht} \Lambda$ if pseudo $\mathrm{Ht} \wedge$ is excluded
* Pharmacological treatment.
(1) maximize diuretic
(2) add mineralocorticoid agonist
(3) add agents with different MOA
(4) use loop divertics for CKD patients \& patients that take potent vaso dilators (ex :minoxidil)
pseudo HIn: is Hts affected by:
(1) lifestyle (ex: 4 salt intake)
(2) if the patient isn't taking perscribed doses
(3) if the patient takes medications that interfere with Described antihyperten sives (ex: NSAIDs, Steroids, decongestants)

SECONDARY HTN

- " Secondary" HTN accounts for $\sim 5-10 \%$ of other cases and represents potentially curable disease
- Often overlooked and underscreened
- Controversy over
screening and treatment in some cases

Underlying cause of high BP in about 10\% of adults with hypertension

Common causes

Renal parenchymal disease

Renovascular disease

Primary aldosteronism

Obstructive sleep apnea

Drug or alcohol induced

Uncommon causes

Pheochromocytoma/paraganglioma

Cushing's syndrome

Hypothyroidism

Hyperthyroidism

Aortic coarctation (undiagnosed or repaired)

Primary hyperparathyroidism

Congenital adrenal hyperplasia
Mineralocorticoid excess syndromes other than primary aldosteronism
Acromegaly

SCREENING

General principles: (when to screen)

- New onset HTN if 50 years of age (very Young/very old)
- HTN refractory to medical Rx (>3 megs) (resistant Ht^)
- Specific clinical/lab features typical for certain disease entity: -Hypokalemia, \rightarrow-x renal A Stenosis -Epigastric bruit (turbulance blood flow caused by stenosis) -Differential BP between arm and leg (ex: coarchtation of aorta) -Episodic HTN/flushing/palp, etc
\rightarrow ex: pheochromocytoma

RENAL PARENCHYMAL DISEASE

- Common cause of secondary HTN

$$
\rightarrow \text { (ت) }
$$

- HTN is both a cause and consequence of renal disease
- Multifactorial cause for HTN including disturbances in Na /water balance, ${ }^{2}$ depletion of vasodilators leading to highTPR
- Renal disease from multiple etiologies, treat underlying disease, dialysis/ transplant if necessary (reversible Kidney impairment (reversible $\mathrm{H}+\mathrm{n}$)
* if we know that this patient has renal disease \& used to have normal BP \& now has Hts \& creatinine $=2.5$ then we know that Hts is 2° to renal disease
* BP is harder to control in patients with parenchymal disease

RENOVASCULAR HTN

Incidence 1-30\%

Etiology

*atherosclerosis: usually in the Proximal segment of renal A (Vessel ostium)

- Atherosclerosis 75-90\% \rightarrow Older O 7
- Fibromuscular dysplasia 10-25\% (FMD) \rightarrow younger +
- Other
-Aortic/renal dissection
-Takayasu's arteritis
-Thrombotic/cholesterol emboli
-CVD
-Post transplantation stenosis
* FMD : Usually in middle to distal segment of renal A isome lesions develop thicker tunica media (beading pattern)

-Post radiation

RENOVASCULAR HTN - PATHOPHYSIOLOGY

renal A stenosis \rightarrow blolood flow to juxtaglumerular cells \rightarrow 4 renin release

- Decrease in renal perfusion pressure activates RAAS, renin release converts angiotensinogen \rightarrow Angl I; ACE converts Angl I \rightarrow Angl II
- Ang II causes vasoconstriction which causes HTN and enhances adrenal release of aldosterone; leads to sodium and fluid retention
- Contralateral kidney (if unilateral RAS) responds with diuresis/ Na , H2O excretion which can return plasma volume to normal
- Bilateral RAS or solitary kidney RAS leads to rapid volume expansion and ultimate decline in renin secretion
\rightarrow bilateral renal A stenosis \rightarrow pulmonary edema (but echo \& EF is normal \rightarrow not a cardial etiology)

RENOVASCULAR HTN - CLINICAL

History (presentation)

- onset HTN age 55
- Sudden onset uncontrolled HTN in previously well controlled pt (resistant)
- Accelerated/malignant HTN
- Intermittent pulm edema with nl LV fxn

PE/Lab

- Epigastric bruit, particulary systolic/diastolic
- Azotemia induced by ACEI (Azotemia = acute Kidney injury) \rightarrow sudden
- Unilateral small kidney creatinine elevation after use of ACEI
\rightarrow (ischemic nephropathy)

RENOVASCULAR HTN - DIAGNOSIS

* 2 D echo \rightarrow shows
- Physical findings (bruit)
size of Structure
- Duplex U/S (Ultrasound)
- Captopril renography (nuclear Scan)
* duplex echo \rightarrow Shows
velocity (turbulence
- CTA (CT scan with angiography) indicates Stenosis)
- MRA (MR Scan " 1)
- Renal Angiography (Cath)

CT \& renal angiography are risky because they have contrast media (if Creatinine was 4 this may cause end stage renal failure)

FIBROMUSCULAR DYSPLASIA

- 10-25\% of all RAS
- Young female, age 15-40
- Medial disease 90\%, often involves distal RA
- Treatment - PTCA
-Successful in 82-100\% of patients
-Restenosis in 5-11\%
-"Cure" of HTN in ~60\%

ATHEROSCLEROTIC RAS

- 75-90\% of RAS
- Usually men, age>55
- Treatment
-Stent success 94-100\%

PROCEDURES TO TREAT ATHEROSCLEROSIS \& FMD

Fibromuscular Dysplasia, before and after PTCA baloon angiography (blow baloon in vessel to dilate it)

Atherosclerotic RAS before and after stent (inserting a metal mesh inside vessel to keep it OPen)

RENOVASCULAR HTN - MEDICAL RX

- Aggressive risk fx modification (lipid, tobacco, etc)

$$
\rightarrow \text { not recommended in bilateral }
$$

- ACEI/ARB safe in unilateral RAS if careful titration and close monitoring (4 creatinine 1-2 weeks after Starting medication \rightarrow stop drug because there might be renal A stenosis)

PRIMARY HYPERALDOSTERONISM

Prevalence .5- 2.0\%

Etiology

- Adrenal adenoma 33\%
- bilat adrenal hyperplasia 66\%

Clinical:

\rightarrow Caused by hypokalemia

- May be asymptomatic; headache, muscle cramps, polyuria
- Hypokalemia (K normal in 40\%-70\%), metabolic alkalosis, high Na

PRIMARY ALDOSTERONISM- DX

4 4 4 4

- Aldosterone / Plasma Renin Activity ratio

$$
\text { Ratio }>20 \text { (ratio }>30 \text { if patient is on divretic })
$$

- Confirmatory/physiologic testing

Suppression - Withold BP meds 2wks
test \uparrow • High serum aldo after IV saline ($1.25 \mathrm{~L} \times 2 \mathrm{hr}$) load

- serum aldo $<8.5 \mathrm{ng} / \mathrm{dl}$ after IV saline rules out primary aldosteronism
- Imaging -CT \rightarrow bilateral hyperplasia or adenoma appear

PRIMARY ALDOSTERONISM - TREATMENT

- Surgical removal of adrenal tumor, can be done laparoscopically
(gradually inhibits aldosterone)
- Pretreatment for 3-4 wks with spironolactone minimizes postoperative hypoaldosteronism and restores K to normal levels, response of BP to spiro treatment is predictor of surgical outcome

OBSTRUCTIVE SLEEP APNEA (obese, Short neck)
\measuredangle may be associated with resistant HI 八, atrial fibrillation, HF

- Published reports estimate incidence of $30-80 \%$ of pt with essential HTN have OSA and 50\% pt with OSA have HTN1
- Prospective studies show link between OSA (apneic-hyponeic index) and development of HTN independent of other risk fx2
- Clinical:
- Daytime somnolescence, am headaches, snoring or witnessed apneic episodes, interrupted sleep
- Dx - Sleep studies (Sleep lab, apnea hypopnea index)
- Rx - wt loss, CPAP, surgical
G_{\square} Cont. + airway pressure (for severe OSP)

PHEOCHROMOCYTOMA

- Rare cause of HTN (.1-1.0\%)
- Tumor containing chromaffin cells which secrete catecholamines EINE
- Young-middle age with female predominance
- Clinical
- Intermittent HTN, palpitations, sweating, anxiety "spells" , ¢ HR
- May be provoked by triggers such as tyraminecontaining foods (beer,cheese,wine), pain, trauma, drugs (clonidine, TCA, opiates)

PHEOCHROMOCYTOMA SCREEN

- Best detected during or immediately after episodes

	Sensitivity	Specificity
Plasma free metanephrine $>.66 \mathrm{nmol} / \mathrm{L}$	99%	89%
24 hr urine metanephrine $(>3.7 \mathrm{nmol} / \mathrm{d})$	77%	93%
24 urine VMA	64%	95%

PHEOCHROMOCYTOMA -

DIAGNOSIS

- Imaging for localization of tumor

	Sens	Spec	PPV	NPV
(MIBG) scintigraphy	78%	100%	100%	87%
CT	98%	70%	69%	98%
MRI	100%	67%	83%	100%

PHEOCHROMOCYTOMA - TREATMENT

- Surgical removal of tumor
- Anesthesia- avoid benzo, barbiturates or demerol which can trigger catechol release
- Complications include ligation of renal artery, post op hypoglycemia, hemorrhage and volume loss
- Mort 2\%, 5 yr survival 95\% with <10\% recurrence
- Caution with BB- can cause unopposed alpha stimulation/ pheo crisis f
- BP control with alpha blockers (phentolamine, phenoxybenzamine, and prazosin)

CUSHING'S SYNDROME/ HYPERCORTISOLISM

- Rare cause of secondary HTN (.1-.6\%)
- Etiology: pituitary microadenoma, iatrogenic (steroid use), ectopic ACTH, adrenal adenoma
- Clinical

Sudden weight gain,truncal obesity, moon facies, abdominal striae, DM/glucose intolerance, HTN, prox muscle weakness, skin atrophy, hirsutism/acne

CUSHINGS SYNDROME

pit = pituitary

DX:

Screen:

- 24 Hr Urine free cortisol

Confirm

- Low dose dexamethasone suppression test
- 1 mg dexameth. midnight, the^ measure am plasma cortisol
Imaging
\rightarrow in the morning

RX: (removal of tumor by:)

- Cushings dz/ pit adenoma
- Transphenoidal resection -Pituitary irradiation -Bromocriptine, octreotide
- Adrenal tumors - adrenalectomy
- Removal of ACTH tumor (extra adrenal)
- CT/MRI head (pit) chest (ectopic ACTH tumor)

COARCTATION OF AORTA

- Congenital defect, male>female
- Clinical
- Differential systolic BP arms vs legs
- Diminished/absent femoral art pulse
- Often asymptomatic
- Assoc with Turners, bicuspid AV
- If uncorrected 67% will develop LV failure by age 40 and 75% will die by age 50
- Surgical Rx, long term survival better if corrected early (repair of aorta or Stenting)

* poor prognosis

HYPERTHYROIDISM

- 33\% of thyrotoxic pt develop HTN
- Usually obvious signs of thyrotoxicosis
- Dx: TSH, Free T4/3, thyroid RAIU
- Rx: radioactive ablation, propanolol

HYPOTHYROIDISM

- 25\% hypothyroid pt develop HTN
- Mechanism mediated by local control, as basal metabolism falls so does accumulation of local metabolites; relative vasoconstriction ensues

CONCLUSIONS

- Remember clinical/diagnostic features of common forms of secondary HTN
- Important to appropriately screen pt suspected of having potentially correctable causes of HTN
- Understand limitations of screening/treatment (atherosclerotic RAS)

2017 ACC/AHA BP GUIDELINE: THRESHOLDS FOR TREATMENT

* AHA/ACC 2013 Pooled Cohort CVD Risk Equations

Whelton PK et al. Hypertension/J Am Coll Cardiol. 2017;Epub ahead of print

* Stage 1 Hr patients need pharmacological therapy if they are at $>10 \%$ risk of ASCUD (atherosclerotic Cardiovascular disease)
* we don't calculate ASCUD risk if the patient is: >65 yo or diabetic or has CKD (they are automatically given therapy because they have $>10 \%$ risk)
* Stage $2 \mathrm{Ht} \wedge$ patients always need pharmacological therapy (they require 2 drugs)

2017 ACC/AHA BP GUIDELINE: TREATMENT TARGETS

SBP		DBP	CVD Risk	Recommended Treatment
<120	and	480	N/A	N / A
120-129	and	<80	N/A	N/A
130-139	or	80-89	No CVD and 10-year ASCVD risk <10\%	
130-139	or	80-89	Clinical CVD or 10-year ASCVD risk $\geq 10 \%$	80
≥ 130	or	≥ 80	Diabetes or CKD	
≥ 140	or	≥ 90	N/A	
≥ 130			Age ≥ 65 years	SBP $<130 \mathrm{~mm} \mathrm{Hg}$

BENEFITS OF LOWERING BP

	Average percent reduction
Stroke incidence	$35-40 \%$
Myocardial infarction	$20-25 \%$
Heart failure	50%

HYPERTENSION

Lifestyle Modifications:

- Weight reduction
- Limitation of alcohol intake
- Regular physical activity
- Avoidance of tobacco use
- Stress management

Nutritional Therapy: DASH Diet = Dietary Approahes to Stop HTN

- Sodium restriction
- Rich in vegetables, fruit, and nonfat dairy products
- Calorie restriction if overweight

Choice of Drug Therapy in Treatment of Hypertension

First-step agents:

1. Compelling indication

- Use agent(s) that concurrently lower BP (e.g. post-MI, SIHD, HF)

2. No compelling indication

- Achieving BP goal more important than choice of drug therapy
- Diuretic or CCB often good choice, but
- Drugs from following classes acceptable (4 main Classes)
- Diuretic (esp. long-acting thiazide-type agent such as chlorthalidone)
- Calcium channel blocker (CCB)
- Angiotensin converting enzyme inhibitor (ACEI)
- Angiotensin receptor blocker (ARB)
* Others: nitrates (venodilators), hydralazine (afterload reducing agent), mino xidil, centrally acting , α blockers

Choice of Drug Therapy in Treatment of Hypertension

Combination drug therapy:

1. Initial treatment with two drugs in most patients

- esp. in blacks and adults with stage 2 hypertension with BP $\geq 20 / 10$ above target

2. Use agents with complimentary modes of action - e.g. diuretic or CCB with ACEI or ARB
3. Use combination pill when feasible
```
* now we have pills of
    3 medications (ex: ARB+
    CCK + thiazide diuretic) to
    make compliance easier
```

4. In blacks with hypertension but without HF or CKD (including those with DM):

- Initial treatment should include thiazide-type diuretic or CCB

5. Simultaneous use of ACEI and ARB not recommended (don't Combine ACE I

- Potentially harmful

ANTIHYPERTENSIVE DRUG TREATMENT: DIABETES MELLITUS

- In adults with hypertension and DM,
- If average $B P \geq 130 / 80 \mathrm{~mm} \mathrm{Hg}$, initiate antihypertensive drug therapy and treat to $<130 / 80 \mathrm{~mm} \mathrm{Hg}$
- All first-line classes of antihypertensives (i.e., diuretics, ACE inhibitors, ARBs, and CCBs) useful and effective
- Consider ACEI or ARBs in presence of albuminuria

ANTIHYPERTENSIVE DRUG TREATMENT: HEART FAILURE

Hypertension and heart failure with reduced ejection factor (HFrEF)

- Prescribe guideline directed medical therapy (GDMT) ACEI, ARB, BB, MRA
- Nondihydropyridine CCBs not recommended
- BP goal: $<130 / 80 \mathrm{~mm} \mathrm{Hg}$ Spiraindicated)
Hypertension and heart failure with preserved ejection factor (HFpEF)
- If symptoms of volume overload, prescribe diuretics
- If high BP persists, prescribe ACE inhibitors or ARBs and beta blockers \& CCBs
- BP goal: <130/80 mm Hg

ANTIHYPERTENSIVE DRUG TREATMENT: ISCHEMIC HEART DISEASE

Adults with hypertension and stable ischemic heart disease (SIHD)

- Use GDMT medications (e.g., beta blockers, ACE inhibitors, or ARBs) for compelling indications (e.g., previous MI, stable angina)
- Add other drugs (e.g. dihydropyridine CCBs, thiazide diuretics, and/or mineralocorticoid receptor antagonists) as needed to control hypertension
- BP target: <130/80 mm Hg

```
* coronary A disease patient }->\mathrm{ BBinitrates, CCBs
    \triangleACEI & ARBs have Snown Endothelial
    function benifits
```


ANTIHYPERTENSIVE DRUG TREATMENT: CKD

Adults with hypertension and CKD

- Treatment with ACE inhibitors reasonable to slow kidney disease progression:
- Stage 3 (eGFR 30-59 mL/min/1.73 M2) or higher
- Stage 1 or 2 with albuminuria $\geq 300 \mathrm{mg} / \mathrm{d}$
- Use of ARBs reasonable if ACE inhibitors not tolerated
- BP goal: SBP <130/80 mm Hg
* Stage lor 2 CKD $($ GFR 760$)$ + proteinuria \rightarrow we prefer $A C E I$ or ARBs

