The Circulation

1. Listed below are the hydrostatic and oncotic pressures within a microcirculatory bed.

Plasma colloid osmotic pressure = 25 mm Hg Capillary hydrostatic pressure = 25 mm Hg Venous hydrostatic pressure = 5 mm Hg Arterial pressure = 80 mm Hg Interstitial fluid hydrostatic pressure = -5 mm Hg Interstitial colloid osmotic pressure = 10 mm Hg Capillary filtration coefficient = 10 ml/min/mm Hg

What is the rate of net fluid movement across the capillary wall?

- A) 25 ml/min
- B) 50 ml/min
- C) 100 ml/min
- D) 150 ml/min
- E) 200 ml/min
- 2. A healthy 60-year-old woman with a 10-year history of hypertension stands up from a supine position. Which set of cardiovascular changes is most likely to occur in response to standing up from a supine position?

	Sympathetic Nerve Activity	Parasympathetic Nerve Activity	Heart Rate
A)	1	Î	1
B)	1	1	Ļ
C)	1	\downarrow	Ļ
D)	1	\downarrow	Î
E)	\downarrow	\downarrow	Ļ
F)	\downarrow	\downarrow	Î
G)	\downarrow	↑	Î
H)	\downarrow	Ť	\downarrow

3. In an experimental study, administration of a drug decreases the diameter of arterioles in the muscle bed of an animal subject. Which set of physiological changes would be expected to occur in response to the decrease in diameter?

	Vascular Conductance	Capillary Filtration	Blood Flow
A)	1	Î	Î
B)	1	Ļ	1
C)	1	Ļ	Ļ
D)	1	1	Ļ
E)	\downarrow	Ļ	Ļ
F)	\downarrow	Î	Ļ
G)	\downarrow	Î	Ť
H)	\downarrow	\downarrow	Î

4. A 60-year-old woman has experienced dizziness for the past 6 months when getting out of bed in the morning and when standing up. Her mean arterial pressure is 130/90 mm Hg while lying down and 95/60 while sitting. Which set of physiological changes would be expected in response to moving from a supine to an upright position?

	Parasympathetic Nerve Activity	Plasma Renin Activity	Sympathetic Activity
A)	1	1	Î
B)	1	\downarrow	1
C)	1	\downarrow	\downarrow
D)	1	1	\downarrow
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	Î	\downarrow
G)	\downarrow	1	1
H)	\downarrow	\downarrow	1

5. A 35-year-old woman visits her family practitioner for an examination. She has a blood pressure of 160/75 mm Hg and a heart rate of 74 beats/min. Further tests by a cardiologist reveal that the patient has moderate aortic regurgitation. Which set of changes would be expected in this patient?

	Pulse Pressure	Systolic Pressure	Stroke Volume
A)	1	↑	Î
B)	1	\downarrow	1
C)	1	\downarrow	\downarrow
D)	1	1	\downarrow
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	1	\downarrow
G)	\downarrow	1	1
H)	\downarrow	\downarrow	Î

6. A healthy 27-year-old female medical student runs a 5K race. Which set of physiological changes is most likely to occur in this woman's skeletal muscles during the race?

	Arteriole Diameter	Vascular Conductance	Tissue Oxygen Concentration
A)	1	1	1
B)	1	1	\downarrow
C)	1	\downarrow	\downarrow
D)	ſ	\downarrow	Î
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	\downarrow	Î
G)	\downarrow	1	Î
H)	\downarrow	1	\downarrow

7. Cognitive stimuli such as reading, problem solving, and talking all result in significant increases in cerebral blood flow. Which set of changes in cerebral tissue concentrations is the most likely explanation for the increase in cerebral blood flow?

	Carbon Dioxide	рН	Adenosine
A)	↑	Î	↑
B)	Î	Ļ	1
C)	1	Ļ	Ļ
D)	1	Î	Ļ
E)	\downarrow	Ļ	Ļ
F)	\downarrow	Î	Ļ
G)	\downarrow	Î	Î
H)	\downarrow	\downarrow	Î

8. Histamine is infused into the brachial artery. Which set of microcirculatory changes would be expected in the infused arm?

	Capillary Water Permeability	Capillary Hydrostatic Pressure	Capillary Filtration Rate
A)	1	1	Î
B)	1	1	Ļ
C)	1	\downarrow	Ļ
D)	ſ	\downarrow	1
E)	\downarrow	\downarrow	Ļ
F)	\downarrow	\downarrow	Î
G)	\downarrow	Î	Î
H)	\downarrow	1	Ļ

- 9. An increase in shear stress in a blood vessel results in which change?
 - A) Decreased endothelin production
 - B) Decreased cyclic guanosine monophosphate production
 - C) Increased nitric oxide release
 - D) Increased renin production
 - E) Decreased prostacyclin production
- 10. A 65-year-old man with a 10-year history of essential hypertension is being treated with an angiotensinconverting enzyme (ACE) inhibitor. Which set of changes would be expected to occur in response to the ACE inhibitor drug therapy?

	Plasma Renin Concentration	Total Peripheral Resistance	Renal Sodium Excretory Function
A)	1	1	1
B)	1	\uparrow	\downarrow
C)	1	\downarrow	\downarrow
D)	1	\downarrow	Î
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	\downarrow	1
G)	\downarrow	Î	1
H)	Ļ	1	\downarrow

- 11. The diameter of a precapillary arteriole is increased in a muscle vascular bed. A decrease in which of the following would be expected?
 - A) Capillary filtration rate
 - B) Vascular conductance
 - C) Capillary blood flow
 - D) Capillary hydrostatic pressure
 - E) Arteriolar resistance

12. A 55-year-old man with a history of normal health visits his physician for a checkup. The physical examination reveals that his blood pressure is 170/98 mm Hg. Further tests indicate that he has renovascular hypertension as a result of stenosis in the left kidney. Which set of findings would be expected in this man with renovascular hypertension?

	Total Peripheral Resistance	Plasma Renin Activity	Plasma Aldosterone Concentration
A)	1	1	1
B)	Î	\downarrow	1
C)	Î	\downarrow	\downarrow
D)	Î	Î	\downarrow
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	Î	\downarrow
G)	\downarrow	Î	Î
H)	\downarrow	\downarrow	1

- 13. Under control conditions, flow through a blood vessel is 100 ml/min with a pressure gradient of 50 mm Hg. What would be the approximate flow through the vessel after increasing the vessel diameter by 50%, assuming that the pressure gradient is maintained at 100 mm Hg?
 - A) 100 ml/min
 - B) 150 ml/min
 - C) 300 ml/min
 - D) 500 ml/min
 - E) 700 ml/min
- 14. A 24-year-old woman delivers a 6-pound, 8-ounce baby girl. The newborn is diagnosed as having patent ductus arteriosus. Which set of changes would be expected in this baby?

	Pulse Pressure	Stroke Volume	Systolic Pressure
A)	1	1	↑
B)	1	\downarrow	Î
C)	1	\downarrow	\downarrow
D)	Î	1	\downarrow
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	1	\downarrow
G)	\downarrow	1	Î
H)	\downarrow	\downarrow	1

- 15. A 72-year-old man had surgery to remove an abdominal tumor. Pathohistological studies revealed that the tumor mass contained a large number of vessels. The most likely stimulus for the growth of vessels in a solid tumor is an increase in which of the following?
 - A) Growth hormone
 - B) Plasma glucose concentration
 - C) Angiostatin growth factor
 - D) Vascular endothelial growth factor
 - E) Tissue oxygen concentration

16. Which set of changes would be expected to cause the greatest increase in the net movement of sodium across a muscle capillary wall?

	Wall Permeability to Sodium	Wall Surface Area	Concentration Difference Across Wall
A)	1	↑	1
B)	1	Î	\downarrow
C)	1	\downarrow	\downarrow
D)	1	Ļ	ſ
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	\downarrow	ſ
G)	\downarrow	Î	ſ
H)	\downarrow	Î	\downarrow

17. While participating in a cardiovascular physiology laboratory, a medical student isolates an animal's carotid artery proximal to the carotid bifurcation and partially constricts the artery with a tie around the vessel. Which set of changes would be expected to occur in response to constriction of the carotid artery?

	Heart Rate	Sympathetic Nerve Activity	Total Peripheral Resistance
A)	1	Î	1
B)	1	Î	\downarrow
C)	1	\downarrow	\downarrow
D)	1	Ļ	1
E)	\downarrow	Ļ	\downarrow
F)	\downarrow	Ļ	ſ
G)	\downarrow	1	ſ
H)	\downarrow	Î	\downarrow

18. A 35-year-old woman visits her family practice physician for an examination. She has a mean arterial blood pressure of 105 mm Hg and a heart rate of 74 beats/min. Further tests by a cardiologist reveal that the patient has moderate aortic valve stenosis. Which set of changes would be expected in this patient?

	Pulse Pressure	Stroke Volume	Systolic Pressure
A)	1	1	1
B)	1	\downarrow	1
C)	Î	\downarrow	\downarrow
D)	Î	ſ	\downarrow
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	Î	\downarrow
G)	\downarrow	1	Î
H)	\downarrow	\downarrow	Î

19. A 60-year-old man visits his family practitioner for an annual examination. He has a mean blood pressure of 130 mm Hg and a heart rate of 78 beats/min. His plasma cholesterol level is in the upper 25th percentile, and he is diagnosed as having atherosclerosis. Which set of changes would be expected in this patient?

	Pulse Pressure	Arterial Compliance	Systolic Pressure
A)	1	1	Ť
B)	1	\downarrow	↑
C)	Î	\downarrow	Ļ
D)	1	1	Ļ
E)	\downarrow	\downarrow	Ļ
F)	\downarrow	1	Ļ
G)	\downarrow	Î	1
H)	\downarrow	\downarrow	1

20. While participating in a cardiovascular physiology laboratory, a medical student isolates the carotid artery of an animal and partially constricts the artery with a tie around the vessel. Which set of changes would be expected to occur in response to constriction of the carotid artery?

	Sympathetic Nerve Activity	Renal Blood Flow	Total Peripheral Resistance
A)	1	Î	1
B)	1	Ļ	\uparrow
C)	1	Ļ	\downarrow
D)	1	1	\downarrow
E)	\downarrow	Ļ	\downarrow
F)	\downarrow	1	\downarrow
G)	\downarrow	1	\uparrow
H)	\downarrow	\downarrow	1

- 21. Which mechanism would tend to decrease capillary filtration rate?
 - A) Increased capillary hydrostatic pressure
 - B) Decreased plasma colloid osmotic pressure
 - C) Increased interstitial colloid osmotic pressure
 - D) Decreased capillary water permeability
 - E) Decreased arteriolar resistance
- 22. A 72-year-old man had surgery to remove an abdominal tumor. Findings of pathohistological studies reveal that the tumor mass contains a large number of blood vessels. The most likely stimulus for the growth of vessels in a solid tumor is an increase in which of the following?
 - A) Growth hormone
 - B) Plasma glucose concentration
 - C) Angiostatin growth factor
 - D) Tissue oxygen concentration
 - E) Vascular endothelial growth factor (VEGF)

- 23. The diameter of a precapillary arteriole is decreased in a muscle vascular bed. Which change in the microcirculation would be expected?
 - A) Decreased capillary filtration rate
 - B) Increased interstitial volume
 - C) Increased lymph flow
 - D) Increased capillary hydrostatic pressure
 - E) Decreased arteriolar resistance
- 24. A 50-year-old man has a 3-year history of hypertension. He reports fatigue and occasional muscle cramps. There is no family history of hypertension. The patient has not had any other significant medical problems in the past. Examination reveals a blood pressure of 168/104 mm Hg. Additional laboratory tests indicate that the patient has primary hyperaldosteronism. Which set of findings would be expected in this man with primary hyperaldosteronism hypertension?

	Extracellular Fluid Volume	Plasma Renin Activity	Plasma Potassium Concentration
A)	Î	1	↑
B)	↑	\downarrow	1
C)	↑	\downarrow	\downarrow
D)	↑	1	\downarrow
E)	Ļ	\downarrow	\downarrow
F)	Ļ	1	\downarrow
G)	\downarrow	Î	Î
H)	\downarrow	\downarrow	1

- 25. An increase in which of the following would tend to increase lymph flow?
 - A) Hydraulic conductivity of the capillary wall
 - B) Plasma colloid osmotic pressure
 - C) Capillary hydrostatic pressure
 - D) Arteriolar resistance
 - E) A and C
- 26. In control conditions, flow through a blood vessel is 100 ml/min under a pressure gradient of 50 mm Hg. What would be the approximate flow through the vessel after increasing the vessel diameter to four times normal, assuming that the pressure gradient was maintained at 50 mm Hg?
 - A) 300 ml/min
 - B) 1600 ml/min
 - C) 1000 ml/min
 - D) 16,000 ml/min
 - E) 25,600 ml/min

- 27. A 50-year-old woman has a renal blood flow of 1200 ml/min and hematocrit of 50. Her arterial pressure is 125 mm Hg, and her renal venous pressure is 5 mm Hg. She also has a plasma colloid osmotic pressure of 25 mm Hg and a glomerular capillary hydrostatic pressure of 50 mm Hg. What is the total renal vascular resistance (in mm Hg/ml/min) in this woman?
 - A) 0.05
 - B) 0.10
 - C) 0.50
 - D) 1.00E) 1.50
- 28. An increase in which of the following would be expected to decrease blood flow in a vessel?
 - A) Pressure gradient across the vessel
 - B) Radius of the vessel
 - C) Plasma colloid osmotic pressure
 - D) Viscosity of the blood
 - E) Plasma sodium concentration
- 29. Assuming that vessels A to D are the same length, which one has the greatest flow?

	Pressure Gradient	Radius	Viscosity
A)	100	1	10
A) B)	50	2	5
C)	25	4	2
D)	10	6	1

30. A 22-year-old man enters the hospital emergency department after severing a major artery in a motorcycle accident. It is estimated that he has lost approximately 700 milliliters of blood. His blood pressure is 90/55 mm Hg. Which set of changes would be expected in response to hemorrhage in this man?

	Heart Rate	Sympathetic Nerve Activity	Total Peripheral Resistance
A)	1	Î	ſ
B)	Î	\downarrow	1
C)	Î	\downarrow	\downarrow
D)	Î	↑	\downarrow
E)	Ļ	\downarrow	\downarrow
F)	Ļ	↑	\downarrow
G)	Ļ	↑	ſ
H)	Ļ	\downarrow	Î

31. A healthy 28-year-old woman stands up from a supine position. Moving from a supine to a standing position results in a transient decrease in arterial pressure that is detected by arterial baroreceptors located in the aortic arch and carotid sinuses. Which set of cardiovascular changes is most likely to occur in response to activation of the baroreceptors?

	Mean Circulatory Filling Pressure	Strength of Cardiac Contraction	Sympathetic Nerve Activity
A)	Î	1	Î
B)	1	\downarrow	Î
C)	1	\downarrow	\downarrow
D)	Î	Î	\downarrow
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	Î	\downarrow
G)	\downarrow	Î	Î
H)	\downarrow	\downarrow	Î

- 32. An ACE inhibitor is administered to a 65-year-old man with a 20-year history of hypertension. The drug lowered his arterial pressure and increased his plasma levels of renin and bradykinin. Which mechanism would best explain the decrease in arterial pressure?
 - A) Inhibition of angiotensin I
 - B) Decreased conversion of angiotensinogen to angiotensin I
 - C) Increased plasma levels of bradykinin
 - D) Increased plasma levels of renin
 - E) Decreased formation of angiotensin II
- 33. A 25-year-old man enters the hospital emergency department after severing a major artery during a farm accident. It is estimated that the patient has lost approximately 800 milliliters of blood. His mean blood pressure is 65 mm Hg, and his heart rate is elevated as a result of activation of the chemoreceptor reflex. Which set of changes in plasma concentration would be expected to cause the greatest activation of the chemoreceptor reflex?

	Oxygen	Carbon Dioxide	Hydrogen
A)	1	↑	ſ
B)	Î	\downarrow	Î
C)	1	\downarrow	Ļ
D)	1	\uparrow	Ļ
E)	Ļ	\downarrow	Ļ
F)	Ļ	↑	Ļ
G)	Ļ	\uparrow	1
H)	Ļ	\downarrow	1

- 34. Under normal physiological conditions, blood flow to the skeletal muscles is determined mainly by which of the following?
 - A) Sympathetic nerves
 - B) Angiotensin II
 - C) Vasopressin
 - D) Metabolic needs
 - E) Capillary osmotic pressure

- 35. A healthy 22-year-old female medical student has an exercise stress test at a local health club. An increase in which of the following is most likely to occur in this woman's skeletal muscles during exercise?
 - A) Vascular conductance
 - B) Blood flow
 - C) Carbon dioxide concentration
 - D) Arteriolar diameter
 - E) All the above
- 36. Which of the following segments of the circulatory system has the highest velocity of blood flow?
 - A) Aorta
 - B) Arteries
 - C) Capillaries
 - D) Venules
 - E) Veins
- 37. Listed below are the hydrostatic and oncotic pressures within a microcirculatory bed.

Plasma colloid osmotic pressure = 25 mm Hg Capillary hydrostatic pressure = 25 mm Hg Venous hydrostatic pressure = 5 mm Hg Arterial pressure = 80 mm Hg Interstitial hydrostatic pressure = -5 mm Hg Interstitial colloid osmotic pressure = 5 mm Hg Filtration coefficient = 15 ml/min/mm Hg

What is the filtration rate (ml/min) of the capillary wall?

- A) 100
- B) 150
- C) 200
- D) 250
- E) 300

38. Which blood vessel has the highest vascular resistance?

	Blood Flow (ml/min)	Pressure Gradient (mm Hg)
A)	1000	100
B)	1200	60
C)	1400	20
D)	1600	80
E)	1800	40

- 39. A twofold increase in which of the following would result in the greatest increase in the transport of oxygen across the capillary wall?
 - A) Capillary hydrostatic pressure
 - B) Intercellular clefts in the capillary wall
 - C) Oxygen concentration gradient
 - D) Plasma colloid osmotic pressure
 - E) Capillary wall hydraulic permeability

- 40. A balloon catheter is advanced from the superior vena cava into the heart and inflated to increase atrial pressure by 5 mm Hg. An increase in which of the following would be expected to occur in response to the elevated atrial pressure?
 - A) Atrial natriuretic peptide
 - B) Angiotensin II
 - C) Aldosterone
 - D) Renal sympathetic nerve activity
- 41. Which of the following vessels has the greatest total cross-sectional area in the circulatory system?
 - A) Aorta
 - B) Small arteries
 - C) Capillaries
 - D) Venules
 - E) Vena cava
- 42. An increase in atrial pressure results in which of the following?
 - A) Decrease in plasma atrial natriuretic peptide
 - B) Increase in plasma angiotensin II concentration
 - C) Increase in plasma aldosterone concentration
 - D) Increase in sodium excretion
- 43. Autoregulation of tissue blood flow in response to an increase in arterial pressure occurs as a result of which of the following?
 - A) Decrease in vascular resistance
 - B) Initial decrease in vascular wall tension
 - C) Excess delivery of nutrients such as oxygen to the tissues
 - D) Decrease in tissue metabolism
- 44. Which component of the circulatory system contains the largest percentage of the total blood volume?
 - A) Arteries
 - B) Capillaries
 - C) Veins
 - D) Pulmonary circulation
 - E) Heart
- 45. Which set of changes would be expected to occur 2 weeks after a 50% reduction in renal artery pressure?

	Plasma Renin	Plasma Aldosterone Concentration	Glomerular Filtration Rate
A)	Î	<u>↑</u>	1
B)	Î	Î	\downarrow
C)	Î	\downarrow	\downarrow
D)	Î	\downarrow	1
E)	Ļ	\downarrow	\downarrow
F)	Ļ	\downarrow	1
G)	Ļ	Î	1
H)	Ļ	1	\downarrow

- 46. An increase in which of the following tends to decrease capillary filtration rate?
 - A) Capillary hydrostatic pressure
 - B) Plasma colloid osmotic pressure
 - C) Interstitial colloid osmotic pressure
 - D) Venous hydrostatic pressure
 - E) Arteriolar diameter
- 47. An increase in which of the following would be expected to occur in a person 2 weeks after an increase in sodium intake?
 - A) Angiotensin II
 - B) Aldosterone
 - C) Potassium excretion
 - D) Atrial natriuretic peptide
- 48. A decrease in which of the following tends to increase lymph flow?
 - A) Capillary hydrostatic pressure
 - B) Interstitial hydrostatic pressure
 - C) Plasma colloid osmotic pressure
 - D) Lymphatic pump activity
 - E) Arteriolar diameter
- 49. A decrease in the production of which of the following would most likely result in chronic hypertension?
 - A) Aldosterone
 - B) Thromboxane
 - C) Angiotensin II
 - D) Nitric oxide
- 50. Which of the following capillaries has the lowest capillary permeability to plasma molecules?
 - A) Glomerular
 - B) Liver
 - C) Muscle
 - D) Intestinal
 - E) Brain
- 51. Which of the following would be expected to occur during a Cushing reaction caused by brain ischemia?
 - A) Increase in parasympathetic activity
 - B) Decrease in arterial pressure
 - C) Decrease in heart rate
 - D) Increase in sympathetic activity
- 52. Which of the following tends to increase the net movement of glucose across a capillary wall?
 - A) Increase in plasma sodium concentration
 - B) Increase in the concentration difference of glucose across the wall
 - C) Decrease in wall permeability to glucose
 - D) Decrease in wall surface area without an increase in the number of pores
 - E) Decrease in plasma potassium concentration

- 53. A 65-year-old man has congestive heart failure. He has a cardiac output of 4 L/min, arterial pressure of 115/85 mm Hg, and a heart rate of 90 beats/min. Further tests by a cardiologist reveal that the patient has a right atrial pressure of 10 mm Hg. An increase in which of the following would be expected in this patient?
 - A) Plasma colloid osmotic pressure
 - B) Interstitial colloid osmotic pressure
 - C) Arterial pressure
 - D) Cardiac output
 - E) Vena cava hydrostatic pressure
- 54. Which set of changes would be expected to occur in response to a direct increase in renal arterial pressure in kidneys without an intact tubuloglomerular feedback system?

	Glomerular Filtration	Sodium Excretion	Water Excretion Rate
A)	Î	1	1
B)	1	Î	\downarrow
C)	Î	\downarrow	\downarrow
D)	Î	\downarrow	Î
E)	Ļ	\downarrow	\downarrow
F)	Ļ	\downarrow	Î
G)	Ļ	Î	Î
H)	Ļ	Î	\downarrow

- 55. Which part of the circulation has the highest compliance?
 - A) Capillaries
 - B) Large arteries
 - C) Veins
 - D) Aorta
 - E) Small arteries
- 56. A decrease in which of the following tends to increase pulse pressure?
 - A) Systolic pressure
 - B) Stroke volume
 - C) Arterial compliance
 - D) Venous return
 - E) Plasma volume
- 57. Using the following data, calculate the filtration coefficient for the capillary bed.

Plasma colloid osmotic pressure = 30 mm Hg Capillary hydrostatic pressure = 40 mm Hg Interstitial hydrostatic pressure = 5 mm Hg Interstitial colloid osmotic pressure = 5 mm Hg Filtration rate = 150 ml/min Venous hydrostatic pressure = 10 mm Hg

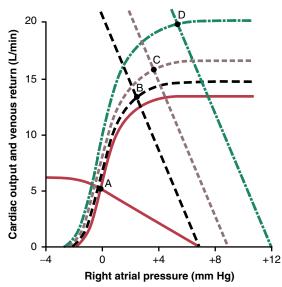
- A) 10 ml/min/mm Hg
- B) 15 ml/min/mm Hg
- C) 20 ml/min/mm Hg
- D) 25 ml/min/mm Hg
- E) 30 ml/min/mm Hg

58. Which set of physiological changes would be expected to occur in a person who stands up from a supine position?

	Venous Hydrostatic Pressure in Legs	Heart Rate	Renal Blood Flow
A)	↑	Î	Î
B)	1	ſ	\downarrow
C)	1	Ţ	\downarrow
D)	\downarrow	Ţ	\downarrow
E)	\downarrow	Ļ	Ť
F)	\downarrow	Î	Î
D)	↑ ↓ ↓	↓ ↓ ↓ ↑	↓ ↓ ↑

- 59. Blood flow to a tissue remains relatively constant despite a reduction in arterial pressure (autoregulation). Which of the following would be expected to occur in response to the reduction in arterial pressure?
 - A) Decreased conductance
 - B) Decreased tissue carbon dioxide concentration
 - C) Increased tissue oxygen concentration
 - D) Decreased vascular resistance
 - E) Decreased arteriolar diameter
- 60. Which of the following would have the slowest rate of net movement across the capillary wall?
 - A) Sodium
 - B) Albumin
 - C) Glucose
 - D) Oxygen
- 61. An increase in which of the following tends to increase capillary filtration rate?
 - A) Capillary wall hydraulic conductivity
 - B) Arteriolar resistance
 - C) Plasma colloid osmotic pressure
 - D) Interstitial hydrostatic pressure
 - E) Plasma sodium concentration
- 62. The tendency for turbulent flow is greatest in which of the following?
 - A) Arterioles
 - B) Capillaries
 - C) Small arterioles
 - D) Aorta
- 63. A 60-year-old man has a mean arterial blood pressure of 130 mm Hg, a heart rate of 78 beats/min, a right atrial pressure of 0 mm Hg, and a cardiac output of 3.5 L/min. He also has a pulse pressure of 35 mm Hg and a hematocrit of 40. What is the approximate total peripheral vascular resistance in this man?
 - A) 17 mm Hg/L/min
 - B) 1.3 mm Hg/L/min
 - C) 13 mm Hg/L/min
 - D) 27 mm Hg/L/min
 - E) 37 mm Hg/L/min

- 64. Which pressure is normally negative in a muscle capillary bed in the lower extremities?
 - A) Plasma colloid osmotic pressure
 - B) Capillary hydrostatic pressure
 - C) Interstitial hydrostatic pressure
 - D) Interstitial colloid osmotic pressure
 - E) Venous hydrostatic pressure
- 65. What would tend to increase a person's pulse pressure?
 - A) Decreased stroke volume
 - B) Increased arterial compliance
 - C) Hemorrhage
 - D) Patent ductus
 - E) Decreased venous return
- 66. Movement of solutes such as Na⁺ across the capillary walls occurs primarily by which process?
 - A) Filtration
 - B) Active transport
 - C) Vesicular transport
 - D) Diffusion
- 67. What would decrease venous hydrostatic pressure in the legs?
 - A) Increase in right atrial pressure
 - B) Pregnancy
 - C) Movement of leg muscles
 - D) Presence of ascitic fluid in the abdomen
- 68. A nitric oxide donor is infused into the brachial artery of a 22-year-old man. Which set of microcirculatory changes would be expected in the infused arm?


	Capillary Hydrostatic Pressure	Interstitial Hydrostatic Pressure	Lymph Flow
A)	↑	1	1
B)	\uparrow	Î	\downarrow
C)	\uparrow	\downarrow	\downarrow
D)	\uparrow	\downarrow	Î
E)	\downarrow	\downarrow	\downarrow
F)	\downarrow	\downarrow	Î
G)	\downarrow	Î	1
H)	\downarrow	Î	Ļ

69. What often occurs in decompensated heart failure?

- A) Increased renal loss of sodium and water
- B) Decreased mean systemic filling pressure
- C) Increased norepinephrine in cardiac sympathetic nerves
- D) Orthopnea
- E) Weight loss
- 70. Which condition often occurs in progressive hemorrhagic shock?
 - A) Vasomotor center failure
 - B) Increased urine output
 - C) Tissue alkalosis
 - D) Decreased capillary permeability
 - E) Increased mean systemic filling pressure

UNIT IV

- 71. A 50-year-old woman received an overdose of furosemide, and her arterial pressure decreased to 70/40. Her heart rate is 120, and her respiratory rate is 30/min. What therapy would you recommend?
 - A) Whole blood infusion
 - B) Plasma infusion
 - C) Infusion of a balanced electrolyte solution
 - D) Infusion of a sympathomimetic drug
 - E) Administration of a glucocorticoid
- 72. A 30-year-old woman comes to a local emergency department with severe vomiting. She has pale skin, tachycardia, an arterial pressure of 70/45, and trouble walking. What therapy do you recommend to prevent shock?
 - A) Infusion of packed red blood cells
 - B) Administration of an antihistamine
 - C) Infusion of a balanced electrolyte solution
 - D) Infusion of a sympathomimetic drug
 - E) Administration of a glucocorticoid

Modified from Guyton AC, Jones CE, Coleman TB: Circulatory Physiology: Cardiac Output and Its Regulation, 2nd ed. Philadelphia: WB Saunders, 1973.

- 73. In the above figure, for the cardiac output and venous return curves defined by the solid red lines (with the equilibrium at A), which of the following options is true?
 - A) Mean systemic filling pressure is 12 mm Hg
 - B) Right atrial pressure is 2 mm Hg
 - C) Resistance to venous return is 1.4 mm Hg/L/min
 - D) Pulmonary arterial flow is approximately 7 L/min
 - E) Resistance to venous return is 0.71 mm Hg/L/min

74. A 30-year-old man is resting, and his sympathetic output increases to maximal values. Which set of changes would be expected in response to this increased sympathetic output?

	Resistance to Venous Return	Mean Systemic Filling Pressure	Venous Return
A)	1	1	1
B)	1	\downarrow	Î
C)	1	\downarrow	Ļ
D)	1	1	Ļ
E)	\downarrow	\downarrow	Ļ
F)	\downarrow	1	Ļ
G)	\downarrow	1	1
H)	\downarrow	\downarrow	Î

- 75. If a patient has an oxygen consumption of 240 ml/min, a pulmonary vein oxygen concentration of 180 ml/L of blood, and a pulmonary artery oxygen concentration of 160 ml/L of blood units, what is the cardiac output in L/min?
 - A) 8
 - B) 10
 - C) 12
 - D) 16
 - E) 20
- 76. What normally causes the cardiac output curve to shift to the right along the right atrial pressure axis?
 - A) Changing intrapleural pressure to -1 mm Hg
 - B) Increasing mean systemic filling pressure
 - C) Taking a patient off a mechanical ventilator and allowing normal respiration
 - D) Decreasing intrapleural pressure to -7 mm Hg
 - E) Breathing against a negative pressure
- 77. What normally causes the cardiac output curve to shift to the left along the right atrial pressure axis?
 - A) Surgically opening the chest
 - B) Severe cardiac tamponade
 - C) Breathing against a negative pressure
 - D) Playing a trumpet
 - E) Positive pressure breathing
- 78. What will elevate the plateau of the cardiac output curve?
 - A) Surgically opening the thoracic cage
 - B) Connecting a patient to a mechanical ventilator
 - C) Cardiac tamponade
 - D) Increasing parasympathetic stimulation of the heart
 - E) Increasing sympathetic stimulation of the heart
- 79. What is normally associated with an increased cardiac output?
 - A) Increased parasympathetic stimulation
 - B) Atrioventricular (A-V) fistula
 - C) Decreased blood volume
 - D) Polycythemia
 - E) Severe aortic regurgitation

- 80. Which condition would be expected to decrease mean systemic filling pressure?
 - A) Norepinephrine administration
 - B) Increased blood volume
 - C) Increased sympathetic stimulation
 - D) Increased venous compliance
 - E) Skeletal muscle contraction
- 81. Which statement about resistance to venous return (RVR) is true?
 - A) An increase in venous resistance causes an increase in RVR
 - B) Increased parasympathetic stimulation causes an increase in RVR
 - C) An increase in RVR causes an increase in venous return
 - D) Sympathetic inhibition causes an increase in RVR
 - E) Changes in arterial resistance have a greater effect on RVR than do equal changes in venous resistance
- 82. In which condition would you expect a decreased resistance to venous return?
 - A) Anemia
 - B) Increased venous resistance
 - C) Increased arteriolar resistance
 - D) Increased sympathetic output
 - E) Obstruction of veins
- 83. What is normally associated with an increased cardiac output?
 - A) Increased venous compliance
 - B) Cardiac tamponade
 - C) Surgically opening the chest
 - D) Moderate anemia
 - E) Severe aortic stenosis
- 84. In which condition would you normally expect to find a decreased cardiac output?
 - A) Hyperthyroidism
 - B) Beriberi
 - C) A-V fistula
 - D) Anemia
 - E) Acute myocardial infarction
- 85. At the onset of exercise, what normally occurs?
 - A) Decreased cerebral blood flow
 - B) Increased venous constriction
 - C) Decreased coronary blood flow
 - D) Decreased mean systemic filling pressure
 - E) Increased parasympathetic impulses to the heart
- 86. What will usually increase the plateau level of the cardiac output curve?
 - A) Myocarditis
 - B) Severe cardiac tamponade
 - C) Decreased parasympathetic stimulation of the heart

- D) Myocardial infarction
- E) Mitral stenosis
- 87. If a person has been exercising for 1 hour, which organ will have the smallest decrease in blood flow?
 - A) Brain
 - B) Intestines
 - C) Kidneys
 - D) Nonexercising skeletal muscle
 - E) Pancreas
- 88. What increases the risk of adverse cardiac events?
 - A) Decreased blood levels of low-density lipoprotein (LDL)
 - B) Decreased blood levels of high-density lipoprotein (HDL)
 - C) Female gender
 - D) Moderate hypotension
 - E) Decreased blood triglycerides
- 89. Which vasoactive agent is usually the most important controller of coronary blood flow?
 - A) Adenosine
 - B) Bradykinin
 - C) Prostaglandins
 - D) Carbon dioxide
 - E) Potassium ions
- 90. What will elevate the plateau of the cardiac output curve?
 - A) Surgically opening the thoracic cage
 - B) Connecting a patient to a mechanical ventilator
 - C) Cardiac tamponade
 - D) Increasing parasympathetic stimulation of the heart
 - E) Increasing sympathetic stimulation of the heart
- 91. Which statement about coronary blood flow is most accurate?
 - A) Normal resting coronary blood flow is 500 ml/min
 - B) The majority of flow occurs during systole
 - C) During systole, the percentage decrease in subendocardial flow is greater than the percentage decrease in epicardial flow
 - D) Adenosine release will normally decrease coronary flow
- 92. Which condition normally causes arteriolar vasodilation during exercise?
 - A) Decreased plasma potassium ion concentration
 - B) Increased histamine release
 - C) Decreased plasma nitric oxide concentration
 - D) Increased plasma adenosine concentration
 - E) Decreased plasma osmolality

- 93. At the onset of exercise, the mass sympathetic nervous system strongly discharges. What would you expect to occur?
 - A) Increased sympathetic impulses to the heart
 - B) Decreased coronary blood flow
 - C) Decreased cerebral blood flow
 - D) Reverse stress relaxation
 - E) Venous dilation
- 94. Which of the following blood vessels is responsible for transporting the majority of venous blood flow that leaves the ventricular heart muscle?
 - A) Anterior cardiac veins
 - B) Coronary sinus
 - C) Bronchial veins
 - D) Azygos vein
 - E) Thebesian veins
- 95. A 70-year-old man with a weight of 100 kilograms (220 pounds) and a blood pressure of 160/90 has been told by his doctor that he has angina caused by myocardial ischemia. Which treatment would be beneficial to this man?
 - A) Increased dietary calcium
 - B) Isometric exercise
 - C) A beta-1 receptor stimulator
 - D) Angiotensin II infusion
 - E) Nitroglycerin
- 96. Which event normally occurs during exercise?
 - A) Arteriolar dilation in non-exercising muscle
 - B) Decreased sympathetic output
 - C) Venoconstriction
 - D) Decreased release of epinephrine by the adrenals
 - E) Decreased release of norepinephrine by the adrenals
- 97. What is the most frequent cause of decreased coronary blood flow in patients with ischemic heart disease?
 - A) Increased adenosine release
 - B) Atherosclerosis
 - C) Coronary artery spasm
 - D) Increased sympathetic tone of the coronary arteries
 - E) Occlusion of the coronary sinus
- 98. A 60-year-old man sustained an ischemia-induced myocardial infarction and died from ventricular fibrillation. In this patient, what factor was most likely to increase the tendency of the heart to fibrillate after the infarction?
 - A) Low potassium concentration in the heart extracellular fluid
 - B) A decrease in ventricular diameter
 - C) Increased sympathetic stimulation of the heart
 - D) Low adenosine concentration
 - E) Decreased parasympathetic stimulation of the heart

- 99. A 60-year-old man has been told by his doctor that he has angina caused by myocardial ischemia. Which treatment would be beneficial to this man?
 - A) Angiotensin-converting enzyme inhibition
 - B) Isometric exercise
 - C) Chelation therapy such as ethylenediamine tetraacetic acid (EDTA)
 - D) Beta receptor stimulation
 - E) Increased dietary calcium
- 100. What is one of the major causes of death after myocardial infarction?
 - A) Increased cardiac output
 - B) A decrease in pulmonary interstitial volume
 - C) Fibrillation of the heart
 - D) Increased cardiac contractility
- 101. Which statement about the results of sympathetic stimulation is most accurate?
 - A) Epicardial flow increases
 - B) Venous resistance decreases
 - C) Arteriolar resistance decreases
 - D) Heart rate decreases
 - E) Venous reservoirs constrict
- 102. What is normally associated with the chronic stages of compensated heart failure? Assume the patient is resting.
 - A) Dyspnea
 - B) Decreased right atrial pressure
 - C) Decreased heart rate
 - D) Sweating
 - E) Increased mean systemic filling pressure
- 103. What normally occurs in a person with unilateral left heart failure?
 - A) Decreased pulmonary artery pressure
 - B) Decreased left atrial pressure
 - C) Decreased right atrial pressure
 - D) Edema of feet
 - E) Increased mean pulmonary filling pressure
- 104. What normally causes renal sodium retention during compensated heart failure?
 - A) Increased formation of angiotensin II
 - B) Increased release of atrial natriuretic factor
 - C) Sympathetic vasodilation of the afferent arterioles
 - D) Increased glomerular filtration rate
 - E) Increased formation of antidiuretic hormone (ADH)
- 105. Which intervention would normally be beneficial to a patient with acute pulmonary edema?
 - A) Infuse a vasoconstrictor drug
 - B) Infuse a balanced electrolyte solution
 - C) Administer furosemide
 - D) Administer a bronchoconstrictor
 - E) Infuse whole blood

- 106. A 60-year-old man had a heart attack 2 days ago, and his blood pressure has continued to decrease. He is now in cardiogenic shock. Which therapy would be most beneficial?
 - A) Placing tourniquets on all four limbs
 - B) Administering a sympathetic inhibitor
 - C) Administering furosemide
 - D) Administering a blood volume expander
 - E) Increasing dietary sodium intake
- 107. If a 21-year-old male patient has a cardiac reserve of 300% and a maximum cardiac output of 16 L/min, what is his resting cardiac output?
 - A) 3 L/min
 - B) 4 L/min
 - C) 5.33 L/min
 - D) 6 L/min
 - E) 8 L/min
- 108. Which of the following occurs during heart failure and causes an increase in renal sodium excretion?
 - A) Increased aldosterone release
 - B) Increased atrial natriuretic factor release
 - C) Decreased glomerular filtration rate
 - D) Increased angiotensin II release
 - E) Decreased mean arterial pressure
- 109. Which intervention would be appropriate therapy for a patient in cardiogenic shock?
 - A) Placing tourniquets on the four limbs
 - B) Withdrawing a moderate amount of blood from the patient
 - C) Administering furosemide
 - D) Infusing a vasoconstrictor drug
- 110. Which condition normally accompanies acute unilateral right heart failure?
 - A) Increased right atrial pressure
 - B) Increased left atrial pressure
 - C) Increased urinary output
 - D) Increased cardiac output
 - E) Increased arterial pressure
- 111. What is normally associated with the chronic stages of compensated heart failure? Assume the patient is resting.
 - A) Decreased mean systemic filling pressure
 - B) Increased right atrial pressure
 - C) Increased heart rate
 - D) Sweating
 - E) Dyspnea
- 112. Patients with pulmonary edema often have dyspnea because of accumulation of fluid in the lungs. Which of the following would normally be the most beneficial for a patient with acute pulmonary edema?
 - A) Infusing furosemide
 - B) Infusing dobutamine

- C) Infusing saline solution
- D) Infusing norepinephrine
- E) Infusing whole blood
- 113. Which of the following is associated with compensated heart failure?
 - A) Increased cardiac output
 - B) Increased blood volume
 - C) Decreased mean systemic filling pressure
 - D) Normal right atrial pressure
- 114. Which condition is normally associated with an increase in mean systemic filling pressure?
 - A) Decreased blood volume
 - B) Congestive heart failure
 - C) Sympathetic inhibition
 - D) Venous dilation
- 115. Which condition normally occurs during the early stages of compensated heart failure?
 - A) Increased right atrial pressure
 - B) Normal heart rate
 - C) Decreased angiotensin II release
 - D) Decreased aldosterone release
 - E) Increased urinary output of sodium and water
- 116. What often occurs during decompensated heart failure?
 - A) Hypertension
 - B) Increased mean pulmonary filling pressure
 - C) Decreased pulmonary capillary pressure
 - D) Increased cardiac output
 - E) Increased norepinephrine in the endings of the cardiac sympathetic nerves
- 117. Which of the following often occurs in decompensated heart failure?
 - A) Increased renal loss of sodium and water
 - B) Decreased mean systemic filling pressure
 - C) Increased norepinephrine in cardiac sympathetic receptors
 - D) Orthopnea
 - E) Weight loss
- 118. An 80-year-old male patient at a local hospital was diagnosed with a heart murmur. A chest radiograph showed an enlarged heart but no edema fluid in the lungs. The mean QRS axis of his ECG was 170 degrees. His pulmonary wedge pressure was normal. What is the diagnosis?
 - A) Mitral stenosis
 - B) Aortic stenosis
 - C) Pulmonary valve stenosis
 - D) Tricuspid stenosis
 - E) Mitral regurgitation

- 119. The fourth heart sound is associated with which mechanism?
 - A) In-rushing of blood into the ventricles from atrial contraction
 - B) Closing of the A-V valves
 - C) Closing of the pulmonary valve
 - D) Opening of the A-V valves
 - E) In-rushing of blood into the ventricles in the early to middle part of diastole
- 120. A 40-year-old woman has been diagnosed with a heart murmur. A " blowing" murmur of relatively high pitch is heard maximally over the left ventricle. The chest radiograph shows an enlarged heart. Arterial pressure in the aorta is 140/40 mm Hg. What is the diagnosis?
 - A) Aortic valve stenosis
 - B) Aortic valve regurgitation
 - C) Pulmonary valve stenosis
 - D) Mitral valve stenosis
 - E) Tricuspid valve regurgitation
- 121. In which disorder will left ventricular hypertrophy normally occur?
 - A) Pulmonary valve regurgitation
 - B) Tricuspid regurgitation
 - C) Mitral stenosis
 - D) Tricuspid stenosis
 - E) Aortic stenosis
- 122. Which heart murmur is heard during systole?
 - A) Aortic valve regurgitation
 - B) Pulmonary valve regurgitation
 - C) Tricuspid valve stenosis
 - D) Mitral valve stenosis
 - E) Patent ductus arteriosus
- 123. An increase in left atrial pressure is most likely to occur in which heart murmur?
 - A) Tricuspid stenosis
 - B) Pulmonary valve regurgitation
 - C) Aortic stenosis
 - D) Tricuspid regurgitation
 - E) Pulmonary valve stenosis
- 124. A 50-year-old female patient at a local hospital has been diagnosed with a heart murmur. A murmur of relatively low pitch is heard maximally over the second intercostal space to the right of the sternum. The chest radiograph shows an enlarged heart. The mean QRS axis of the ECG is -45 degrees. What is the diagnosis?
 - A) Mitral valve stenosis
 - B) Aortic valve stenosis
 - C) Pulmonary valve stenosis
 - D) Tricuspid valve stenosis
 - E) Tricuspid valve regurgitation

- 125. A 40-year-old female patient has been diagnosed with a heart murmur of relatively high pitch heard maximally in the second intercostal space to the left of the sternum. The mean QRS axis of his ECG is 150 degrees. The arterial blood oxygen content is normal. What is the likely diagnosis?
 - A) Aortic stenosis
 - B) Aortic regurgitation
 - C) Pulmonary valve regurgitation
 - D) Mitral stenosis
 - E) Tricuspid stenosis
- 126. In which condition will right ventricular hypertrophy normally occur?
 - A) Tetralogy of Fallot
 - B) Mild aortic stenosis
 - C) Mild aortic insufficiency
 - D) Mitral stenosis
 - E) Tricuspid stenosis
- 127. Which heart murmur is only heard during diastole?
 - A) Patent ductus arteriosus
 - B) Aortic stenosis
 - C) Tricuspid valve regurgitation
 - D) Interventricular septal defect
 - E) Mitral stenosis
- 128. A person with which condition is most likely to have low arterial oxygen content?
 - A) Tetralogy of Fallot
 - B) Pulmonary artery stenosis
 - C) Tricuspid insufficiency
 - D) Patent ductus arteriosus
 - E) Tricuspid stenosis
- 129. Which of the following is associated with the first heart sound?
 - A) Inrushing of blood into the ventricles as a result of atrial contraction
 - B) Closing of the A-V valves
 - C) Closing of the pulmonary valve
 - D) Opening of the A-V valves
 - E) Inrushing of blood into the ventricles in the early to middle part of diastole
- 130. A 50-year-old woman had an echocardiogram. The results indicated a thickened right ventricle. Other data indicated that the patient had severely decreased arterial oxygen content and equal systolic pressures in both cardiac ventricles. What condition is present?
 - A) Interventricular septal defect
 - B) Tetralogy of Fallot
 - C) Pulmonary valve stenosis
 - D) Pulmonary valve regurgitation
 - E) Patent ductus arteriosus

- 131. Which heart murmur is only heard during diastole?
 - A) Patent ductus arteriosus
 - B) Mitral regurgitation
 - C) Tricuspid valve stenosis
 - D) Interventricular septal defect
 - E) Aortic stenosis
- 132. Which mechanism is associated with the third heart sound?
 - A) Inrushing of blood into the ventricles as a result of atrial contraction
 - B) Closing of the A-V valves
 - C) Closing of the pulmonary valve
 - D) Opening of the A-V valves
 - E) Inrushing of blood into the ventricles in the early to middle part of diastole
- 133. Which condition often occurs in a person with progressive hemorrhagic shock?
 - A) Increased capillary permeability
 - B) Stress relaxation of veins
 - C) Tissue alkalosis
 - D) Increased urine output
 - E) Increased mean systemic filling pressure
- 134. In which condition will administration of a sympathomimetic drug be the therapy of choice to prevent shock?
 - A) Spinal cord injury
 - B) Shock due to excessive vomiting
 - C) Hemorrhagic shock
 - D) Shock caused by excess diuretics
- 135. The blood pressure of a 60-year-old man decreased to 55/35 mm Hg during induction of anesthesia. His ECG still shows a normal sinus rhythm. What initial therapy do you recommend?
 - A) Infusion of packed red blood cells
 - B) Infusion of plasma
 - C) Infusion of a balanced electrolyte solution
 - D) Infusion of a sympathomimetic drug
 - E) Administration of a glucocorticoid
- 136. A 65-year-old man enters a local emergency department a few minutes after receiving an influenza inoculation. He has pallor, tachycardia, arterial pressure of 80/50, and trouble walking. What therapy do you recommend to prevent shock?
 - A) Infusion of blood
 - B) Administration of an antihistamine
 - C) Infusion of a balanced electrolyte solution such as saline
 - D) Infusion of a sympathomimetic drug
 - E) Administration of tissue plasminogen activator

- 137. Which condition often occurs in compensated hemorrhagic shock? Assume systolic pressure is 48 mm Hg.
 - A) Decreased heart rate
 - B) Stress relaxation of veins
 - C) Decreased ADH release
 - D) Decreased absorption of interstitial fluid through the capillaries
 - E) Central nervous system (CNS) ischemic response
- 138. If a patient undergoing spinal anesthesia experiences a large decrease in arterial pressure and goes into shock, what would be the therapy of choice?
 - A) Plasma infusion
 - B) Blood infusion
 - C) Saline solution infusion
 - D) Glucocorticoid infusion
 - E) Infusion of a sympathomimetic drug
- 139. A 25-year-old man who has been in a motorcycle wreck enters the emergency department. His clothes are very bloody, and his arterial pressure is decreased to 70/40. His heart rate is 120, and his respiratory rate is 30/min. Which therapy would the physician recommend?
 - A) Infusion of blood
 - B) Infusion of plasma
 - C) Infusion of a balanced electrolyte solution
 - D) Infusion of a sympathomimetic drug
 - E) Administration of a glucocorticoid
- 140. In which type of shock does cardiac output often increase?
 - A) Hemorrhagic shock
 - B) Anaphylactic shock
 - C) Septic shock
 - D) Neurogenic shock
- 141. A 20-year-old man who has been hemorrhaging as a result of a gunshot wound enters a local emergency department. He has pale skin, tachycardia, an arterial pressure of 60/40, and trouble walking. Unfortunately, the blood bank is out of whole blood. Which therapy would the physician recommend to prevent shock?
 - A) Administration of a glucocorticoid
 - B) Administration of an antihistamine
 - C) Infusion of a balanced electrolyte solution
 - D) Infusion of a sympathomimetic drug
 - E) Infusion of plasma
- 142. A 10-year-old girl in the hospital had an intestinal obstruction, and her arterial pressure decreased to 70/40. Her heart rate is 120, and her respiratory rate is 30/min. Which therapy would the physician recommend?
 - A) Infusion of blood
 - B) Infusion of plasma
 - C) Infusion of a balanced electrolyte solution
 - D) Infusion of a sympathomimetic drug
 - E) Administration of a glucocorticoid

- 143. What often occurs during progressive shock?
 - A) Patchy areas of necrosis in the liver
 - B) Decreased tendency for blood to clot
 - C) Increased glucose metabolism
 - D) Decreased release of hydrolases by lysosomes
 - E) Decreased capillary permeability

- 144. Release of which substance causes vasodilation and increased capillary permeability during anaphylactic shock?
 - A) Histamine
 - B) Bradykinin
 - C) Nitric oxide
 - D) Atrial natriuretic factor
 - E) Adenosine

This page intentionally left blank

ANSWERS

 D) The rate of net fluid movement across a capillary wall is calculated as capillary filtration coefficient × net filtration pressure. Net filtration pressure = capillary hydrostatic pressure – plasma colloid osmotic pressure + interstitial colloid osmotic pressure – interstitial hydrostatic pressure. Thus, the rate of net fluid movement across the capillary wall is 150 ml/min.

 $\begin{aligned} & \text{Filtration rate} = \text{Capillary filtration coefficient } (K_f) \\ & \times \text{Net filtration pressure} \\ & \text{Filtration rate} = K_f \times [\text{Pc} - \Pi \text{c} + \Pi \text{i} - \text{P}_I] \\ & \text{Filtration rate} = 10 \text{ ml/min/mm Hg} \\ & \times [25 - 25 + 10 - (-5)] \\ & \text{Filtration rate} = 10 \times 15 = 150 \text{ ml/min} \\ & \text{TMP13 p. 194} \end{aligned}$

- **2. D**) Moving from a supine to a standing position causes an acute fall in arterial pressure that is sensed by arterial baroreceptors located in the carotid bifurcation and aortic arch. Activation of the arterial baroreceptors leads to an increase in sympathetic outflow to the heart and peripheral vasculature and a decrease in parasympathetic outflow to the heart. The increase in sympathetic activity to peripheral vessels results in an increase in total peripheral resistance. The increase in sympathetic activity and decrease in parasympathetic outflow to the heart rate. TMP13 pp. 220-221
- **3.** E) Administration of a drug that decreases the diameter of arterioles in a muscle bed increases the vascular resistance. The increased vascular resistance decreases vascular conductance and blood flow. The reduction in arteriolar diameter also leads to a decrease in capillary hydrostatic pressure and capillary filtration rate. TMP13 pp. 175 and 194
- **4. G)** Moving from a supine to a standing position causes an acute fall in arterial pressure that is sensed by arterial baroreceptors located in the carotid sinuses and aortic arch. Activation of the baroreceptors results in a decrease in parasympathetic activity (or vagal tone) and an increase in sympathetic activity, which leads to an increase in plasma renin activity (or renin release). TMP13 pp. 219-222
- **5. A)** The difference between systolic pressure and diastolic pressure is the pulse pressure. The two major factors that affect pulse pressure are the stroke volume output of the heart and the compliance of the arterial tree. In patients with moderate aortic regurgitation (due to incomplete closure of aortic valve), the blood that is pumped into the aorta immediately flows back

into the left ventricle. The backflow of blood into the left ventricle increases stroke volume and systolic pressure. The rapid backflow of blood also results in a decrease in diastolic pressure. Thus, patients with moderate aortic regurgitation have high systolic pressure, low diastolic pressure, and high pulse pressure. TMP13 pp. 180-181

6. B) The increase in local metabolism during exercise increases oxygen utilization and decreases tissue oxygen concentration. The decrease in tissue oxygen concentration increases arteriolar diameter and increases vascular conductance and blood flow to skeletal muscles.

TMP13 pp. 204-206

7. B) Cognitive stimuli increase cerebral blood flow by decreasing cerebral vascular resistance. The diameter of cerebral vessels is decreased by various metabolic factors in response to cognitive stimuli. Metabolic factors that enhance cerebral blood flow include increases in carbon dioxide, hydrogen ion (decreased pH), and adenosine.

ТМР13 рр. 203-206

- 8. A) Histamine is a vasodilator that is typically released by mast cells and basophils. Infusion of histamine into a brachial artery would decrease arteriolar resistance and increase water permeability of the capillary wall. The decrease in arteriolar resistance would also increase capillary hydrostatic pressure. The increase in capillary hydrostatic pressure and water permeability leads to an increase in capillary filtration rate. TMP13 pp. 175 and 194
- 9. C) An increase in shear stress in blood vessels is one of the major stimuli for the release of nitric oxide by endothelial cells. Nitric oxide increases blood flow by increasing cyclic guanosine monophosphate. TMP13 p. 208
- 10. D) Angiotensin I is formed by an enzyme (renin) acting on a substrate called angiotensinogen. Angiotensin I is converted to angiotensin II by a converting enzyme. Angiotensin II also has a negative feedback effect on juxtaglomerular cells to inhibit renin secretion. Angiotensin II is a powerful vasoconstrictor and sodiumretaining hormone that increases arterial pressure. Administration of an ACE inhibitor would increase plasma renin concentration, decrease angiotensin II formation, enhance renal sodium excretory function, and decrease total peripheral resistance and arterial pressure. TMP13 pp. 234-235

- E) An increase in the diameter of a precapillary arteriole would decrease arteriolar resistance. The decrease in arteriolar resistance would lead to an increase in vascular conductance and capillary blood flow, hydrostatic pressure, and filtration rate. TMP13 pp. 175 and 194
- A) Stenosis of one kidney results in the release of renin and the formation of angiotensin II from the affected kidney. Angiotensin II stimulates aldosterone production and increases total peripheral resistance by constricting most of the blood vessels in the body. TMP13 p. 236
- 13. D) Blood flow in a vessel is directly proportional to the fourth power of the vessel radius. Increasing vessel diameter by 50% (1.5 × control) would increase blood flow 1.5 to the fourth power × normal blood flow (100 ml/min). Thus, blood flow would increase to 100 ml/min × 5.06, or approximately 500 ml/min. TMP13 p. 175
- 14. A) In patent ductus arteriosus, a large quantity of the blood pumped into the aorta by the left ventricle immediately flows backward into the pulmonary artery and then into the lung and left atrium. The shunting of blood from the aorta results in a low diastolic pressure, while the increased inflow of blood into the left atrium and ventricle increases stroke volume and systolic pressure. The combined increase in systolic pressure and decrease in diastolic pressure results in an increase in pulse pressure.

TMP13 p. 181

15. D) A decrease in tissue oxygen tension is thought to be an important stimulus for vascular endothelial growth factor and the growth of blood vessels in solid tumors.

ТМР13 рр. 209-210

- 16. A) The net movement of sodium across a capillary wall is directly proportional to the wall permeability to sodium, wall surface area, and concentration gradient across the capillary wall. Thus, increases in permeability to sodium, surface area, and sodium concentration gradient wall would all increase the net movement of sodium across the capillary wall. TMP13 pp. 190-192
- 17. A) Constriction of the carotid artery decreases blood pressure at the level of the carotid sinus. A decrease in carotid sinus pressure leads to a decrease in carotid sinus nerve impulses to the vasomotor center, which in turn leads to enhanced sympathetic nervous activity and decreased parasympathetic nerve activity. The increase in sympathetic nerve activity results in peripheral vasoconstriction and an increase in total peripheral resistance and heart rate.

ТМР13 рр. 220-221

18. E) Pulse pressure is the difference between systolic pressure and diastolic pressure. The two major factors that affect pulse pressure are the stroke volume output of the heart and the compliance of the arterial tree. An increase in stroke volume increases systolic and pulse pressure, whereas an increase in compliance of the arterial tree decreases pulse pressure. Moderate aortic valve stenosis results in a decrease in stroke volume, which leads to a decrease in systolic pressure and pulse pressure.

ТМР13 рр. 180-181

19. B) A person with atherosclerosis would be expected to have decreased arterial compliance. The decrease in arterial compliance would lead to an increase in systolic pressure and pulse pressure.

ТМР13 рр. 180-181

- **20. B)** Constriction of the carotid artery reduces blood pressure at the carotid bifurcation where the arterial baroreceptors are located. The decrease in arterial pressure activates baroreceptors, which in turn leads to an increase in sympathetic activity and a decrease in parasympathetic activity (or vagal tone). The enhanced sympathetic activity results in constriction of peripheral blood vessels, including the kidneys. The enhanced sympathetic activity leads to an increase in total peripheral resistance and a decrease in renal blood flow. The combination of enhanced sympathetic activity and decreased vagal tone also leads to an increase in heart rate. TMP13 pp. 219-222
- 21. D) Filtration rate is the product of the filtration coefficient (K_f) and the net pressure across the capillary wall. The net pressure for fluid movement across a capillary wall is promoted by increases in capillary hydrostatic pressure and positive interstitial colloid osmotic pressure, whereas negative plasma colloid osmotic pressure and a positive interstitial hydrostatic pressure oppose filtration. Thus, increased capillary hydrostatic pressure, decreased plasma colloid osmotic pressure, and increased interstitial colloid osmotic pressure would all promote filtration. Decreased arteriolar resistance would also promote filtration by increasing capillary hydrostatic pressure. The filtration coefficient is the product of capillary surface area and the capillary water permeability. A decrease in capillary water permeability would decrease the filtration coefficient and reduce the filtration rate.

ТМР13 рр. 193-194

22. E) Solid tumors are metabolically active tissues that need increased quantities of oxygen and other nutrients. When metabolism in a tissue is increased for a prolonged period, the vascularity of the tissue also increases. One of the important factors that increases growth of new blood vessels is VEGF. Presumably, a deficiency of tissue oxygen or other nutrients, or both, leads to the formation of VEGF.

TMP13 p. 210

23. A) A decrease in the diameter of a precapillary arteriole increases arteriolar resistance while decreasing vascular conductance and capillary blood flow, hydrostatic pressure, filtration rate, interstitial volume, and interstitial hydrostatic pressure.

TMP13 pp. 175 and 194

- 24. C) Excess secretion of aldosterone results in enhanced tubular reabsorption of sodium and secretion of potassium. The increased reabsorption of sodium and water leads to an increase in extracellular fluid volume, which in turn suppresses renin release by the kidney. The increase in potassium secretion leads to a decrease in plasma potassium concentration, or hypokalemia. TMP13 pp. 235-236
- **25. E)** The two main factors that increase lymph flow are an increase in capillary filtration rate and an increase in lymphatic pump activity. An increase in plasma colloid osmotic pressure decreases capillary filtration rate, interstitial volume and hydrostatic pressure, and lymph flow. In contrast, an increase in hydraulic conductivity of the capillary wall and capillary hydrostatic pressure increase capillary filtration rate, interstitial volume and lymph flow. An increase in arteriole resistance would decrease capillary hydrostatic pressure, capillary filtration rate, interstitial volume and pressure, and lymph flow. An increase in arteriole resistance would decrease capillary hydrostatic pressure, capillary filtration rate, interstitial volume and pressure, and lymph flow.

ТМР13 рр. 193-198

26. E) According to Poiseuille's law, flow through a vessel increases in proportion to the fourth power of the radius. A fourfold increase in vessel diameter (or radius) would increase 4 to the fourth power, or 256 times normal. Thus, flow through the vessel after increasing the vessel 4 times normal would increase from 100 to 25,600 ml/min.

ТМР13 рр. 175-176

27. B) Vascular resistance is equal to arterial pressure minus venous pressure divided by blood flow. In this example, arterial pressure is 125 mm Hg, venous pressure is 5 mm Hg, and blood flow is 1200 ml/min. Thus, vascular resistance is equal to 120/1200, or 0.10 mm Hg/ml/min.

ТМР13 р. 172

- 28. D) The rate of blood flow is directly proportional to the fourth power of the vessel radius and to the pressure gradient across the vessel. In contrast, the rate of blood flow is inversely proportional to the viscosity of the blood. Thus, an increase in blood viscosity would decrease blood flow in a vessel. TMP13 pp. 175-176
- **29. D)** The flow in a vessel is directly proportional to the pressure gradient across the vessel and to the fourth power of the radius of the vessel. In contrast, blood flow is inversely proportional to the viscosity of the blood. Because blood flow is proportional to the

fourth power of the vessel radius, the vessel with the largest radius (vessel D) would have the greatest flow. TMP13 p. 176

30. A) The arterial baroreceptors are activated in response to a fall in arterial pressure. During hemorrhage, the fall in arterial pressure at the level of the baroreceptors results in enhanced sympathetic outflow from the vasomotor center and a decrease in parasympathetic nerve activity. The increase in sympathetic nerve activity leads to constriction of peripheral blood vessels, increased total peripheral resistance, and a return of blood pressure toward normal. The decrease in parasympathetic nerve in an increase in heart rate.

ТМР13 рр. 219-222

- **31. A)** Activation of the baroreceptors leads to an increase in sympathetic activity, which in turn increases heart rate, strength of cardiac contraction, and constriction of arterioles and veins. The increase in venous constriction results in an increase in mean circulatory filling pressure, venous return, and cardiac output. TMP13 pp. 219-222
- **32.** E) The conversion of angiotensin I to angiotensin II is catalyzed by a converting enzyme that is present in the endothelium of the lung vessels and in the kidneys. The converting enzyme also serves as a kininase that degrades bradykinin. Thus, a converting enzyme inhibitor not only decreases the formation of angiotensin II but also inhibits kininases and the breakdown of bradykinin. Angiotensin II is a vasoconstrictor and a powerful sodium-retaining hormone. The major cause for the decrease in arterial pressure in response to an ACE inhibitor is the decrease in formation of angiotensin II. TMP13 pp. 234-235
- **33. G)** When blood pressure falls below 80 mm Hg, carotid and aortic chemoreceptors are activated to elicit a neural reflex to minimize the fall in blood pressure. The chemoreceptors are chemosensitive cells that are sensitive to oxygen lack, carbon dioxide excess, or hydrogen ion excess (or fall in pH). The signals transmitted from the chemoreceptors into the vasomotor center excite the vasomotor center to increase arterial pressure. TMP13 p. 222
- 34. D) Although sympathetic nerves, angiotensin II, and vasopressin are powerful vasoconstrictors, blood flow to skeletal muscles under normal physiological conditions is mainly determined by local metabolic needs. TMP13 pp. 206-208
- **35.** E) During exercise, tissue levels of carbon dioxide and lactic acid increase. These metabolites dilate blood vessels, decrease arteriolar resistance, and enhance vascular conductance and blood flow.

ТМР13 рр. 206-207

- **36. A)** The velocity of blood flow within each segment of the circulatory system is inversely proportional to the total cross-sectional area of the segment. Because the aorta has the smallest total cross-sectional area of all circulatory segments, it has the highest velocity of blood flow. TMP13 pp. 173-174
- **37. B)** Filtration rate is the product of the filtration coefficient (K_f) and the net pressure across the capillary wall. The net pressure for fluid movement across a capillary wall = capillary hydrostatic pressure plasma colloid osmotic pressure interstitial colloid osmotic pressure interstitial hydrostatic pressure. The net pressure in this question calculates to be 10 mm Hg, and the K_f is 15. Thus, the filtration rate is 15 × 10, or 150 ml/min. TMP13 pp. 193-194
- **38. A)** Resistance of a vessel = pressure gradient ÷ blood flow of the vessel. In this example, vessel A has the highest vascular resistance (100 mm Hg/1000 ml/min, or 0.1 mm Hg/ml/min).
 - ТМР13 р. 175
- **39. C)** The transport of oxygen across a capillary wall is proportional to the capillary surface area, capillary wall permeability to oxygen, and oxygen gradient across the capillary wall. Thus, a twofold increase in the oxygen concentration gradient would result in the greatest increase in the transport of oxygen across the capillary wall. A twofold increase in intercellular clefts in the capillary wall would not have a significant impact on oxygen transport because oxygen can permeate the endothelial cell wall.

ТМР13 рр. 191-192

40. A) Atrial natriuretic peptide is released from myocytes in the atria in response to increases in atrial pressure.

ТМР13 р. 222

- **41. C)** The capillaries have the largest total cross-sectional area of all vessels of the circulatory system. The venules also have a relatively large total cross-sectional area, but not as great as the capillaries, which explains the large storage of blood in the venous system compared with that in the arterial system. TMP13 pp. 172-173
- **42. D)** An increase in atrial pressure would also increase plasma levels of atrial natriuretic peptide, which in turn would decrease plasma levels of angiotensin II and aldosterone and increase sodium excretion. TMP13 pp. 222-223
- **43. C)** An increase in perfusion pressure to a tissue results in excessive delivery of nutrients such as oxygen to a tissue. The increase in tissue oxygen concentration constricts arterioles and returns blood flow and nutrient delivery toward normal levels.

TMP13 pp. 206-207

- 44. C) The percentage of total blood volume in the veins is approximately 64%.TMP13 p. 169
- **45. B)** Constriction of the renal artery increases release of renin, formation of angiotensin II and aldosterone, and arterial pressure. A 50% reduction in renal artery pressure would be below the range of renal autoregulation and would result in a decrease in the glomerular filtration rate. TMP13 p. 238
- **46. B)** An increase in plasma colloid osmotic pressure would reduce net filtration pressure and capillary filtration rate. Increases in capillary hydrostatic pressure and interstitial colloid osmotic pressure would also favor capillary filtration. An increase in venous hydrostatic pressure and arteriolar diameter would tend to increase capillary hydrostatic pressure and capillary filtration rate.

ТМР13 рр. 193-197

47. D) An increase in sodium intake would result in an increase in sodium excretion to maintain sodium balance. Conversely, potassium excretion would only transiently increase after an increase in sodium intake. Angiotensin II and aldosterone would decrease in response to a chronic elevation in sodium intake, whereas plasma atrial natriuretic peptide levels would increase.

ТМР13 рр. 236-237

48. C) The rate of lymph flow increases in proportion to the interstitial hydrostatic pressure and the lymphatic pump activity. A decrease in plasma colloid osmotic pressure would increase filtration rate, interstitial volume, interstitial hydrostatic pressure, and lymph flow. A decrease in arteriolar diameter would decrease capillary hydrostatic pressure, capillary filtration, and lymph flow.

ТМР13 рр. 193-200

- **49. D)** Nitric oxide is a potent vasodilator and natriuretic substance. Thus, a reduction in nitric oxide production would result in an increase in arterial pressure. In contrast, angiotensin II, thromboxane, and aldosterone are vasoconstrictor and/or antinatriuretic factors. A decrease in the production of these factors would tend to decrease arterial pressure. TMP13 p. 239
- 50. E) The brain has tight junctions between capillary endothelial cells that allow only extremely small molecules such as water, oxygen, and carbon dioxide to pass in or out of the brain tissues.
 TMP13 p. 190
- **51. D)** The Cushing reaction is a special type of CNS ischemic response that results from increased pressure of the cerebrospinal fluid around the brain in the cranial vault. When the cerebrospinal fluid pressure

rises, it decreases the blood supply to the brain and elicits a CNS ischemic response. The CNS ischemic response includes enhanced sympathetic activity, decreased parasympathetic activity, and increased heart rate, arterial pressure, and total peripheral resistance. TMP13 p. 223

52. B) The factors that determine the net movement of glucose across a capillary wall include the wall permeability to glucose, the glucose concentration gradient across the wall, and the capillary wall surface area. Thus, an increase in the concentration difference of glucose across the wall would enhance the net movement of glucose.

ТМР13 рр. 191-192

53. E) An increase in atrial pressure of 10 mm Hg would tend to decrease venous return to the heart and increase vena cava hydrostatic pressure. Plasma colloid osmotic pressure, interstitial colloid osmotic pressure, arterial pressure, and cardiac output would generally be low to normal in this patient.

ТМР13 рр. 184-185

54. A) An increase in renal arterial pressure results in increases in sodium and water excretion. Normally, glomerular filtration rate would be normal or slightly increased in response to an increase in renal artery pressure. However, in the absence of an intact tubuloglomerular feedback system, an important renal autoregulatory mechanism, an increase in renal artery pressure would result in significant increases in glomerular filtration rate.

TMP13 pp. 227-228

- **55. C)** The vascular compliance is proportional to the vascular distensibility and the vascular volume of any given segment of the circulation. The compliance of a systemic vein is 24 times that of its corresponding artery because it is about 8 times as distensible and has a volume about 3 times as great. TMP13 p. 179
- 56. C) The difference between systolic pressure and diastolic pressure is called the pulse pressure. The two main factors that affect pulse pressure are stroke volume and arterial compliance. Pulse pressure is directly proportional to the stroke volume and inversely proportional to the arterial compliance. Thus, a decrease in arterial compliance would tend to increase pulse pressure. TMP13 pp. 180-181
- **57. B)** Filtration coefficient (K_f) = filtration rate \div net filtration pressure. Net filtration pressure = capillary hydrostatic pressure plasma colloid osmotic pressure + interstitial colloid osmotic pressure interstitial hydrostatic pressure. The net filtration pressure in this example is 10 mm Hg. Thus, K_f = 150 ml/min \div 10 mm Hg, or 15 ml/min/mm Hg.

TMP13 pp. 193-198

- **58. B)** Moving from a supine to a standing position results in pooling of blood in the lower extremities and a fall in blood pressure. The pooling of blood in the legs increases venous hydrostatic pressure. The fall in arterial pressure activates the arterial baroreceptors, which in turn increases sympathetic nerve activity and decreases parasympathetic nerve activity. The increase in sympathetic activity constricts renal vessels and reduces renal blood flow. The heart rate also increases. TMP13 pp. 219-222
- 59. D) Reduction in perfusion pressure to a tissue leads to a decrease in tissue oxygen concentration and an increase in tissue carbon dioxide concentration. Both events lead to an increase in arteriolar diameter, decreased vascular resistance, and increased vascular conductance.
 TMP13 pp. 206-207
- **60. B)** Because oxygen is lipid soluble and can cross the capillary wall with ease, it has the fastest rate of movement across the capillary wall. The ability of lipid-insoluble substances such as sodium, albumin, and glucose to move across a capillary wall depends on the permeability of the capillary to lipid-insoluble substances. Because the capillary wall is relatively impermeable to albumin, it has the slowest rate of net movement across the capillary wall.

ТМР13 рр. 191-192

- **61. A)** An increase in capillary wall permeability to water would increase capillary filtration rate, whereas increases in arteriolar resistance, plasma colloid osmotic pressure, and interstitial hydrostatic pressure would all decrease filtration rate. Plasma sodium concentration would have no effect on filtration. TMP13 pp. 193-198
- 62. D) The tendency for turbulent flow occurs at vascular sites where the velocity of blood flow is high. The aorta has the highest velocity of blood flow.TMP13 pp. 175-176
- 63. E) Total peripheral vascular resistance = arterial pressure right atrial pressure ÷ cardiac output. In this example, total peripheral vascular resistance = 130 mm Hg ÷ 3.5 L/min, or approximately 37 mm Hg/L/min. TMP13 pp. 175-176
- **64. C)** Interstitial hydrostatic pressure in a muscle capillary bed is normally negative (-3 mm Hg). Pumping by the lymphatic system is the basic cause of the negative pressure.

ТМР13 р. 195

65. A) The two main factors that affect pulse pressure are stroke volume and arterial compliance. Increases in stroke volume increase pulse pressure, whereas an increase in arterial compliance decreases pulse pressure. Hemorrhage and decreased venous return would decrease stroke volume and pulse pressure. In

patients with patent ductus, stroke volume and pulse pressure are increased as a result of shunting of blood from the aorta to the pulmonary artery. TMP13 pp. 180-181

- 66. D) The primary mechanism whereby solutes move across a capillary wall is simple diffusion.TMP13 p. 191
- 67. C) Movement of the leg muscles causes blood to flow toward the vena cava, which reduces venous hydrostatic pressure. An increase in right atrial pressure would decrease venous return and increase venous hydrostatic pressure. Pregnancy and the presence of ascitic fluid in the abdomen would tend to compress the vena cava and increase venous hydrostatic pressure in the legs. TMP13 pp. 184-185
- 68. A) Nitric oxide is a vasodilator that is believed to play a role in regulating blood flow. Infusion of a nitric oxide donor into the brachial artery would increase arteriolar diameter and decrease arteriolar resistance. The decrease in arteriolar resistance would also result in an increase in capillary hydrostatic pressure and filtration rate. The increase in filtration rate leads to an increase in interstitial hydrostatic pressure and lymph flow. TMP13 pp. 170-171, 200-201
- **69. D)** In persons with decompensated heart failure, the kidneys retain sodium and water, which causes a weight gain and an increase in blood volume. This effect increases the mean systemic filling pressure, which also stretches the heart. Therefore, a decreased mean systemic filling pressure does not occur in decompensated heart failure. The excess blood volume often will overstretch the sarcomeres of the heart, which will prevent them from achieving their maximal tension. An excess central fluid volume also results in orthopnea, which is the inability to breathe properly except in the upright position.

TMP13 pp. 273-275

70. A) During progressive hemorrhagic shock, the vasomotor center often fails, thus reducing sympathetic output. Decreases in arterial pressure will reduce urine output. Decreased blood flow throughout the body causes acidosis because of decreased removal of carbon dioxide. In progressive shock due to hemorrhage, capillary permeability increases and mean systemic filling pressure decreases.

ТМР13 р. 296

71. C) With an overdose of furosemide there is a large loss of sodium and water from the body, resulting in dehydration and sometimes shock. The optimal therapy is to replenish the electrolytes that were lost as a result of the overdose of the furosemide. Therefore, infusion of a balanced electrolyte solution is the therapy of choice. TMP13 pp. 301-302

72. C) Severe vomiting can lead to a large loss of sodium and water from the body, resulting in dehydration and sometimes shock. The best therapy is to replenish the depleted sodium and water lost by vomiting. Therefore, infusion of a balanced electrolyte solution is the therapy of choice.

ТМР13 рр. 301-302

73. C) The formula for resistance to venous return is mean systemic filling pressure – right atrial pressure/ cardiac output. In this example the mean systemic filling pressure is 7 mm Hg and the right atrial pressure is 0 mm Hg. The cardiac output is 5 L/min. Using these values in the previous formula indicates that the resistance to venous return is 1.4 mm Hg/L/min. Note that this formula only applies to the linear portion of the venous return curve.

TMP13 pp. 253-254

- 74. A) During increases in sympathetic output to maximal values, several changes occur. First, the mean systemic filling pressure increases markedly, but at the same time the resistance to venous return increases. Venous return is determined by the following formula: mean systemic filling pressure right atrial pressure/resistance to venous return. During maximal sympathetic output, the increase in systemic filling pressure is greater than the increase in resistance to venous return. Therefore, in this formula the numerator has a much greater increase than the denominator, which results in an increase in the venous return. TMP13 p. 255
- **75. C)** This problem concerns the Fick principle for determining cardiac output. The formula for cardiac output is oxygen absorbed per minute by the lungs divided by the arterial-venous oxygen difference. In this problem, oxygen consumption of the body is 240 ml/min, and in a steady-state condition, this would exactly equal the oxygen absorbed by the lungs. Therefore, by inserting these values into the equation, we see that the cardiac output will equal 12 L/min. TMP13 p. 257
- **76. A)** A shift to the right in the cardiac output curve involves an increase in the normal intrapleural pressure of −4 mm Hg. Changing intrapleural pressure to −1 mm Hg will shift the curve to the right. Changing mean systemic filling pressure does not change the cardiac output curve. Taking a patient off of a ventilator, decreasing intrapleural pressure to −7 mm Hg, and breathing against a negative pressure will shift the cardiac output curve to the left.

TMP13 p. 250

77. C) Several factors can cause the cardiac output to shift to the right or to the left. Among those are surgically opening the chest, which makes the cardiac output curve shift 4 mm Hg to the right, and severe cardiac

tamponade, which increases the pressure inside the pericardium, thus tending to collapse the heart, particularly the atria. Playing a trumpet or positive pressure breathing tremendously increases the intrapleural pressure, thus collapsing the atria and shifting the cardiac output curve to the right. Breathing against a negative pressure will shift the cardiac output curve to the left. TMP13 p. 250

78. E) The plateau level of the cardiac output curve, which is one measure of cardiac contractility, decreases in several circumstances. Some of these circumstances include severe cardiac tamponade, which increases the pressure in the pericardial space, and increasing parasympathetic stimulation of the heart. Increased sympathetic stimulation of the heart increases the level of the cardiac output curve by increasing heart rate and contractility.

TMP13 p. 247

- **79. B)** Cardiac output increases in several conditions because of increased venous return. A-V fistulae also cause a decreased resistance to venous return, thus increasing cardiac output. Cardiac output decreases in patients with hypovolemia, severe aortic regurgitation, and polycythemia. The hematocrit level is high in polycythemia, which increases resistance to venous return. TMP13 pp. 255-256
- **80. D)** Mean systemic filling pressure is a measure of the tightness of fit of the blood in the circulation. Mean systemic filling pressure is increased by factors that increase blood volume and decrease the vascular compliance. Therefore, an decreased venous compliance, not an increased compliance, would cause an increase in mean systemic filling pressure. Norepinephrine administration and sympathetic stimulation cause arteriolar vasoconstriction and decrease in mean systemic filling pressure in mean systemic filling pressure. Increased blood volume and skeletal muscle contraction, which cause a contraction of the vasculature, also increase this filling pressure. TMP13 pp. 252-253
- **81. A)** An increase in venous resistance will increase resistance to venous return to a greater degree than an increase in arterial resistance. Venous return of the heart is equal to the mean systemic filling pressure minus the right atrial pressure divided by the resistance to venous return. Parasympathetic stimulation does not affect resistance to venous return, and sympathetic inhibition will reduce resistance to venous return. TMP13 pp. 253-254
- **82. A)** Anemia will decrease resistance to venous return because of arteriolar dilation. The following mechanisms increase resistance to venous return: increased venous resistance, increased arteriolar resistance, increased sympathetic output, and obstruction of veins. TMP13 pp. 253-254

83. D) Decreased cardiac output can result from a weakened heart or from a decrease in venous return. Increased venous compliance decreases the venous return of blood to the heart. Cardiac tamponade, surgically opening the chest, and severe aortic stenosis will effectively weaken the heart and thus decrease cardiac output. Moderate anemia will cause an arteriolar vasodilation, which increases venous return of blood back to the heart, thus increasing cardiac output.

ТМР13 рр. 249, 255

84. E) Cardiac output increases in several conditions because of increased venous return. Cardiac output increases in hyperthyroidism because of the increased oxygen use by the peripheral tissues, resulting in arteriolar vasodilation and thus increased venous return. Beriberi causes increased cardiac output because a lack of the vitamin thiamine results in peripheral vasodilation. A-V fistulae also cause a decreased resistance to venous return, thus increasing cardiac output. Anemia, because of the decreased oxygen delivery to the tissues, causes an increase in venous return to the heart and thus an increase in cardiac output. Cardiac output decreases in patients with myocardial infarction.

TMP13 pp. 248-249

- 85. B) During exercise there is very little change in cerebral blood flow, and coronary blood flow increases. Because of the increased sympathetic output, mean systemic filling pressure increases and the veins constrict. During exercise there is also a decrease in parasympathetic impulses to the heart. TMP13 pp. 255, 260
- 86. C) The plateau level of the cardiac output curve, which is one measure of cardiac contractility, decreases in several circumstances. Some of these include myo-carditis, severe cardiac tamponade that increases the pressure in the pericardial space, myocardial infarction, and various valvular diseases such as mitral stenosis. Decreased parasympathetic stimulation of the heart actually moderately increases the level of the cardiac output curve by increasing the heart rate. TMP13 p. 247
- 87. A) During increases in sympathetic output, the main two organs that maintain their blood flow are the brain and the heart. During exercise for 1 hour, the intestinal flow decreases significantly, as does the renal and pancreatic blood flows. The skeletal muscle blood flow to non-exercising muscles also decreases at this time. Therefore, the cerebral blood flow remains close to its control value.
 TMP13 p. 260
- **88. B)** Several factors decrease the risk of adverse cardiac events, including decreased levels of LDL, female gender, moderate hypotension, and decreased levels of triglycerides. Decreased levels of HDL will

increase cardiac risks because HDL is a protective cholesterol.

TMP13 pp. 264-265

89. A) Although bradykinin, prostaglandins, carbon dioxide, and potassium ions serve as vasodilators for the coronary artery system, the major controller of coronary blood flow is adenosine. Adenosine is formed as adenosine triphosphate degrades to adenosine monophosphate. Small portions of the adenosine monophosphate are then further degraded to release adenosine into the tissue fluids of the heart muscle, and this adenosine vasodilates the coronary arteries.

TMP13 p. 263

90. E) Sympathetic stimulation directly increases the strength of cardiac contraction and increases the heart rate. In this way the plateau of the Starling curve elevates. Surgically opening the chest and undergoing mechanical ventilation shifts the cardiac output curve to the right. Cardiac tamponade rotates the curve downward, and parasympathetic stimulation depresses the curve.

TMP13 p. 260

91. C) The normal resting coronary blood flow is approximately 225 ml/min. Infusion of adenosine or local release of adenosine normally increases the coronary blood flow. The contraction of the cardiac muscle around the vasculature, particularly in the subendocardial vessels, causes a decrease in blood flow. Therefore, during the systolic phase of the cardiac cycle, the subendocardial flow clearly decreases, while the decrease in epicardial flow is relatively minor.

TMP13 p. 263

92. D) Several factors cause arteriolar vasodilation during exercise, including increases in potassium ion concentration, plasma nitric oxide concentration, plasma adenosine concentration, and plasma osmolality. Although histamine causes arteriolar vasodilation, histamine release does not normally occur during exercise.

TMP13 p. 259

- 93. A) At the beginning of exercise, increases in sympathetic stimulation of the heart strengthens the heart and increases the heart rate. Coronary and cerebral blood flow are spared from any decrease. Reverse stress relaxation does not occur. Venous constriction occurs, not dilation. TMP13 p. 260
- 94. B) The anterior cardiac veins and the thebesian veins both drain venous blood from the heart. However, 75% of the total coronary flow drains from the heart by the coronary sinus.

TMP13 p. 262

95. E) Several drugs have proven to be helpful to patients with myocardial ischemia. Beta receptor blockers (not stimulators) inhibit the sympathetic effects on the heart and are very helpful. ACE inhibition prevents the production of angiotensin II and thus decreases the afterload effect on the heart. Nitroglycerin causes nitric oxide release, resulting in coronary vasodilation. Isometric exercise increases blood pressure markedly and can be harmful, and increased dietary calcium would be of little benefit. TMP13 p. 269

96. C) During exercise the sympathetic output increas-

- es markedly, which causes arteriolar constriction in many places of the body, including non-exercising muscle. The increased sympathetic output also causes venoconstriction throughout the body. During exercise there also is an increased release of norepinephrine and epinephrine by the adrenal glands. TMP13 pp. 260-261
- 97. B) Several factors contribute to decreased coronary flow in patients with ischemic heart disease. Some patients will have spasm of the coronary arteries, which acutely decreases coronary flow. However, the major cause of decreased coronary flow is an atherosclerotic narrowing of the lumen of the coronary arteries. TMP13 p. 264
- 98. C) Increased sympathetic stimulation excites the cardiac myocytes and makes them much more susceptible to fibrillation. High (not low) potassium increases fibrillation tendency. An increase (not a decrease) in ventricular diameter will allow the cardiac muscle to be out of the refractory period when the cardiac impulse next arrives and can increase the tendency to fibrillate. A low adenosine level will probably only cause some coronary constriction. Decreased parasympathetics will allow the heart rate to increase and has little to do with fibrillation.

TMP13 p. 268

- 99. A) In a patient with angina due to myocardial ischemia, oxygen use by the heart must be minimized. Oxygen use can be minimized with ACE inhibition, which decreases angiotensin II formation. This will reduce the arterial pressure and decrease myocardial tension and oxygen use. The use of beta sympathetic blockers (not stimulation) will inhibit the effects of excess sympathetic output on the heart, thus reducing wall tension and oxygen use. Isometric exercise should be avoided because of the large increase in arterial pressure that occurs. Chelation therapy with EDTA and increased dietary calcium have little to do with cardiac function. TMP13 p. 269
- 100. C) The major causes of death after myocardial infarction include a decrease in cardiac output that prevents tissues of the body from receiving adequate

UNIT IV

nutrition and oxygen delivery and prevents removal of waste materials. Other causes of death are pulmonary edema, which reduces the oxygenation of the blood, fibrillation of the heart, and rupture of the heart. Cardiac contractility decreases after a myocardial infarction.

TMP13 p. 266

- 101. E) During sympathetic stimulation, venous reservoirs constrict, venous vascular resistance also increases, arterioles constrict (which increases their resistance), and the heart rate increases. The epicardial coronary vessels have a large number of alpha receptors, but the subendocardial vessels have more beta receptors. Therefore, sympathetic stimulation causes at least a slight constriction of the epicardial vessels. This results in a slight decrease in epicardial flow. TMP13 pp. 260-261, 263
- **102. E)** Several factors change during compensated heart failure to stabilize the circulatory system. Because of increased sympathetic output, the heart rate increases during compensated heart failure. The kidneys retain sodium and water, which increases blood volume and thus right atrial pressure. The increased blood volume that results causes an increase in mean systemic filling pressure, which will help to increase the cardiac

output. Dyspnea usually will occur only in the early stages of compensated failure.

ТМР13 рр. 271-272

103. E) In unilateral left heart failure, the kidneys retain sodium and water and thus increase blood volume and the pulmonary veins, in turn, become congested. Therefore, mean pulmonary filling pressure, pulmonary wedge pressure, and left atrial pressure increase. In contrast, in right heart failure, right atrial pressure increases and edema of the lower extremities, including the feet and ankles, occurs.

TMP13 p. 275

104. A) In compensated heart failure, an increased release of angiotensin II also occurs, which causes direct renal sodium retention and also stimulates aldosterone secretion that will, in turn, cause further increases in sodium retention by the kidneys. Because of the low arterial pressure that occurs in compensated heart failure, the sympathetic output increases. One of the results is a sympathetic vasoconstriction (not vasodilation) of the afferent arterioles of the kidney. This decreases the glomerular hydrostatic pressure and the glomerular filtration rate, resulting in an increase in sodium and water retention in the body. The excess sodium in the body will increase osmolality, which increases the release of antidiuretic hormone, which causes renal water retention (but not sodium retention).

TMP13 p. 276

105. C) During acute pulmonary edema, the increased fluid in the lungs diminishes the oxygen content in the blood. This decreased oxygen weakens the heart even further and also causes arteriolar dilation in the body. This results in increases in venous return of blood to the heart, which cause further leakage of the fluid in the lungs and further decreases in oxygen content in the blood. It is important to interrupt this vicious circle to save a patient's life. This can be interrupted by placing tourniquets on all four limbs, which effectively removes blood volume from the chest. The patient can also breathe oxygen, and a bronchodilator can be administered. Furosemide can be administered to reduce some of the fluid volume in the body and especially in the lungs. One thing you do not want to do is infuse whole blood or an electrolyte solution in this patient because it may exacerbate the pulmonary edema that is already present.

TMP13 p. 277

106. D) Cardiogenic shock results from a weakening of the cardiac muscle many times after coronary thrombosis, which can result in a vicious circle because of low cardiac output resulting in a low diastolic pressure. This causes a decrease in coronary flow, which decreases the cardiac strength even more. Therefore, arterial pressure, particularly diastolic pressure, must be increased in patients with cardiogenic shock with either vasoconstrictors or volume expanders. In this patient the best answer is to infuse plasma. Placing tourniquets on all four limbs decreases the central blood volume, which would worsen the condition of the patient in shock.

TMP13 p. 275

- 107. B) This patient has a resting cardiac output of 4 L/ min, and his cardiac reserve is 300% of this resting cardiac output or 12 L/min. This gives a total maximum cardiac output of 16 L/min. Therefore, the cardiac reserve is the percentage increase that the cardiac output can be elevated over the resting cardiac output. TMP13 p. 277
- **108. B**) Several factors cause sodium retention during heart failure, including aldosterone release, decreased glomerular filtration rate, and an increased angiotensin II release. A decrease in mean arterial pressure also results in decreases in glomerular hydrostatic pressure and causes a decrease in renal sodium excretion. During heart failure, blood volume increases, resulting in an increased cardiac stretch. In particular, the atrial pressure increases, causing a release of atrial natriuretic factor, resulting in an increase in renal sodium excretion.

ТМР13 р. 276

109. D) There is a vicious circle of cardiac deterioration in cardiogenic shock. A weakened heart causes a

decreased cardiac output, which decreases arterial pressure. The decreased arterial pressure, particularly the decrease in diastolic pressure, decreases the coronary blood flow and further weakens the heart and thus further decreases cardiac output. The therapy of choice for a patient in cardiogenic shock is to increase the arterial pressure either with a vasoconstrictor drug or with a volume-expanding drug. Placing tourniquets on the four limbs, withdrawing a moderate amount of blood, or administering furosemide decreases the thoracic blood volume and thus worsens the condition of the patient in cardiogenic shock.

ТМР13 р. 275

- 110. A) In unilateral right heart failure, the right atrial pressure decreases and the overall cardiac output decreases, which results in a decrease in arterial pressure and urinary output. However, left atrial pressure does not increase but in fact decreases.
 TMP13 p. 275
- **111. B**) During compensated heart failure, many factors combine to increase cardiac output so it returns to normal. The kidneys decrease their urinary output of sodium and water to increase the blood volume. This action, when combined with a depressed cardiac output curve, will increase right atrial pressure. Mean systemic filling pressure increases (not decreases), and the venous return of blood back toward the heart thus increases right atrial pressure. Heart rate is normal, and sweating and dyspnea are absent in the chronic stages of compensated failure.

ТМР13 рр. 274-275

- 112. A) Reduction of fluid in the lungs can prevent rapid deterioration in patients with acute pulmonary edema. Furosemide causes venodilation, which reduces thoracic blood volume and acts as a powerful diuretic. These both reduce excess fluid in the lungs. Blood can actually be removed in moderate quantities from the patient to decrease the volume of blood in the chest. Patients should also breathe oxygen to increase the oxygen levels in the blood. However, they should never be given a volume expander, such as saline, plasma, whole blood, or dextran, because it could worsen the pulmonary edema. Norepinephrine would be of little help in treating pulmonary edema. TMP13 pp. 277-278
- **113. B)** In compensated heart failure, mean systemic filling pressure increases because of hypervolemia, and cardiac output is often at normal values. The patient has air hunger, called dyspnea, and excess sweating occurs in the early phases of compensated heart failure. However, right atrial pressure becomes elevated to very high values in these patients and is a hallmark of this disease.

ТМР13 рр. 272-273

ТМР13 р. 272

115. A) During compensated heart failure, release of angiotensin II and aldosterone is increased, causing the kidneys retain sodium and water, which increases the blood volume in the body and the venous return of blood to the heart. This situation results in an increase in right atrial pressure. Increased sympathetic output during compensated heart failure will increase heart rate. Air hunger, called dyspnea, occurs during any type of exertion. The patient also has orthopnea, which is the air hunger that occurs from being in a recumbent position.

TMP13 pp. 272-274

- 116. B) During decompensated heart failure, cardiac output decreases because of weakness of the heart and edema of the cardiac muscle. Pressures in the pulmonary capillary system increase, including the pulmonary capillary pressure and the mean pulmonary filling pressure. Depletion of norepinephrine in the endings of the cardiac sympathetic nerves is another factor that causes weakness of the heart. TMP13 pp. 273-274
- 117. D) In decompensated heart failure, the kidneys retain sodium and water, which causes a weight gain and an increase in blood volume. This situation increases the mean systemic filling pressure, which also stretches the heart. Therefore, a decreased mean systemic filling pressure does not occur in decompensated heart failure. The excess blood volume often overstretches the sarcomeres of the heart, which prevents them from achieving their maximal tension. An excess central fluid volume also results in orthopnea, which is the inability to breathe properly except in the upright position. TMP13 pp. 273-274
- **118. C)** The mean electrical axis of the QRS of this patient is shifted rightward to 170 degrees, which indicates that the right side of the heart is involved. Both aortic stenosis and mitral regurgitation will cause a leftward shift of the QRS axis. Mitral stenosis will not affect the left ventricle, but in severe enough circumstances it could cause an increase in pulmonary artery pressure, which would cause an increase in pulmonary capillary pressure at the same time. Tricuspid stenosis will not affect the right ventricle. Therefore, pulmonary valve stenosis is the only condition that fits this set of symptoms.

ТМР13 рр. 285-286

UNIT IV

119. A) The fourth heart sound occurs at the end of diastole and is caused by inrushing of blood into the ventricles due to atrial contraction. The first heart sound is caused by closing of the A-V valves. The closing of the aortic and pulmonary valves at the end of systole causes the second heart sound. This initiates a vibration throughout the ventricles, aorta, and pulmonary artery. The third heart sound is caused by inrushing of blood into the ventricles in the early to middle part of diastole.

ТМР13 р. 284

120. B) Blowing murmurs of relatively high pitch are usually murmurs associated with valvular insufficiency. The key pieces of data to identify this murmur are the systolic and diastolic pressures. Aortic valve regurgitation typically has a high pulse pressure, which is the systolic - the diastolic pressure, and in this case is 100 mm Hg. Also notice that the diastolic pressure decreases to very low values of 40 mm Hg as the blood leaks back into the left ventricle.

ТМР13 рр. 285-286

121. E) Left ventricular hypertrophy occurs when the left ventricle either has to produce high pressure or when it pumps extra volume with each stroke. During aortic regurgitation, extra blood leaks back into the ventricle during the diastolic period. This extra volume must be expelled during the next heartbeat. During mitral regurgitation, some blood gets pumped out into the aorta, while at the same time blood leaks back into the left atrium. Therefore, the left ventricle is pumping extra volume with each heartbeat. During aortic stenosis, the left ventricle must contract very strongly, producing high wall tension to increase the aortic pressure to the values high enough to expel blood into the aorta. During mitral stenosis the ventricle is normal because the atrium produces the extra pressure to get blood through the stenotic mitral valve.

ТМР13 рр. 285-286

122. E) Several diastolic murmurs can be heard easily with a stethoscope. During diastole, aortic and pulmonary valve regurgitation occur through the insufficient valves causing the heart murmur at this time. Tricuspid and mitral stenosis are diastolic murmurs because blood flows through the restricted valves during the diastolic period. Patent ductus arteriosus is heard in both systole and diastole.

ТМР13 рр. 285-286

123. C) Aortic stenosis has a very high ventricular systolic pressure. Diastolic filling of the ventricle requires a much higher left atrial pressure. However, tricuspid stenosis and regurgitation, pulmonary valve regurgitation, and pulmonary stenosis are associated with an increase in right atrial pressure and should not affect pressure in the left atrium.

ТМР13 рр. 285-286

- **124. B)** This patient has a QRS axis of -45 degrees, indicating a leftward axis shift. In other words, the left side of the heart is enlarged. In aortic valve stenosis the left side of the heart is enlarged because of the extra tension the left ventricular walls must exert to expel blood out the aorta. Therefore, these symptoms fit with a patient with aortic stenosis. In pulmonary valve stenosis, the right side of the heart hypertrophies, and in mitral valve stenosis there is no left ventricular hypertrophy. In tricuspid valve regurgitation, the right side of the heart enlarges, and in tricuspid valve stenosis, no ventricular hypertrophy occurs. TMP13 pp. 285-286
- **125. C)** This patient has a heart murmur heard maximally in the "pulmonary area of cardiac auscultation." The high pitch indicates regurgitation. The rightward axis shift indicates that the right side of the heart has hypertrophied. The two choices that have a rightward axis shift are pulmonary valve regurgitation and tetralogy of Fallot. In tetralogy of Fallot, the arterial blood oxygen content is low, which is not the case with this patient. Therefore, pulmonary valve regurgitation is the correct answer.

ТМР13 рр. 285-286

126. A) Right ventricular hypertrophy occurs when the right heart has to pump a higher volume of blood or pump it against a higher pressure. Tetralogy of Fallot is associated with right ventricular hypertrophy because of the increased pulmonary valvular resistance, and this also occurs during pulmonary artery stenosis. Tricuspid insufficiency causes an increased stroke volume by the right heart, which causes hypertrophy. However, tricuspid stenosis does not affect the right ventricle.

ТМР13 рр. 289-290

- 127. E) Mitral stenosis is heard during diastole only. Aortic stenosis, tricuspid valve regurgitation, interventricular septal effect, and patent ductus arteriosis are clearly heard during systole. However, patent ductus arteriosus is also heard during diastole. TMP13 p. 285
- **128. A)** In tetralogy of Fallot, there is an interventricular septal defect as well as stenosis of either the pulmonary artery or the pulmonary valve. Therefore, it is very difficult for blood to pass into the pulmonary artery and into the lungs to be oxygenated. Instead the blood partially shunts to the left side of the heart, thus bypassing the lungs. This situation results in low arterial oxygen content.

TMP13 pp. 289-290

129. B) The first heart sound by definition is always associated with the closing of the A-V valves. The heart sounds are usually not associated with opening of any of the valves but with the closing of the valves and

the associated vibration of the blood and the walls of the heart. One exception is an opening snap in some mitral valves.

ТМР13 рр. 283-284

130. B) In tetralogy of Fallot, an interventricular septal defect and increased resistance in the pulmonary valve or pulmonary artery cause partial blood shunting toward the left side of the heart without going through the lungs. This situation results in a severely decreased arterial oxygen content. The interventricular septal defect causes equal systolic pressures in both cardiac ventricles, which causes right ventricular hypertrophy and a wall thickness very similar to that of the left ventricle.

ТМР13 рр. 289-290

131. C) Mitral regurgitation and aortic stenosis are murmurs heard during the systolic period. A ventricular septal defect murmur is normally heard only during the systolic phase. Tricuspid valve stenosis and patent ductus arteriosus murmurs are heard during diastole. However, a patent ductus arteriosus murmur is also heard during systole.

ТМР13 рр. 285-286

132. E) The third heart sound is associated with inrushing of blood into the ventricles in the early to middle part of diastole. The next heart sound, the fourth heart sound, is caused by inrushing of blood in the ventricles caused by atrial contraction. The first heart sound is caused by the closing of the A-V valves, and the second heart sound is caused by the closing of the pulmonary and aortic valves.

ТМР13 рр. 283-284

133. A) A number of things occur in progressive shock, including increased capillary permeability, which allows fluid to leak out of the vasculature, thus decreasing the blood volume. Other deteriorating factors include vasomotor center failure, peripheral circulatory failure, decreased cellular mitochondrial activity, and acidosis throughout the body. Usually, urine output strikingly decreases; therefore, the increased urinary output answer is incorrect. Tissue pH decreases and reverse stress relaxation of the veins occurs.

ТМР13 рр. 296-297

134. A) Sympathomimetic drugs are given to counteract hypotension during a number of conditions. These conditions include spinal cord injury in which the sympathetic output is interrupted. Sympathomimetic drugs are also given during very deep anesthesia, which decreases the sympathetic output, and during anaphylactic shock that results from histamine release and the accompanying vasodilatation. Sympathomimetic drugs, such as norepinephrine, increase blood pressure by causing a vasoconstriction. Shock caused by excess vomiting, hemorrhage, or excessive

administration of diuretics results in fluid volume depletion, resulting in decreased blood volume and decreased mean systemic filling pressure. Administering a balanced electrolyte solution best counteracts this condition.

TMP13 p. 301

- 135. D) Too deep a level of anesthesia can decrease sympathetic tone and reduce arterial pressure enough to induce shock. To replace the sympathetic tone that was lost, the optimal therapy is infusion of a sympathomimetic drug. Infusion of red blood cells, plasma, or electrolytes would be of little benefit.
 TMP13 pp. 300-301
- **136. D)** The patient received an influenza inoculation and quickly went into shock, which leads one to believe that he may be in anaphylactic shock. Anaphylactic shock is a state of extreme vasodilation because of histamine release. Antihistamines would be somewhat helpful, but they are very slow acting, and the patient could die in the meantime. Therefore, a very rapid-acting agent must be used, such as a sympathomimetic drug.

TMP13 pp. 300-301

137. E) In compensated hemorrhagic shock, a number of factors prevent the progression of the shock, including increased heart rate. Also occurring is reverse stress relaxation in which the vasculature, particularly the veins, constrict around the available blood volume. Increased ADH release also occurs, which causes water retention from the kidney but also vasoconstriction of the arterioles. A CNS ischemic response also occurs if the blood pressure drops to very low values, causing an increase in sympathetic output. Increased absorption of interstitial fluid through the capillaries also occurs, which increases the volume in the vasculature.

TMP13 p. 295

138. E) Spinal anesthesia, especially when the anesthesia extends all the way up the spinal cord, can block the sympathetic nervous outflow from the spinal cord. This can be a very potent cause of neurogenic shock. The therapy of choice is to replace the sympathetic tone that was lost in the body. The best way to increase the sympathetic tone is by infusing a sympathomimetic drug.

TMP13 p. 301

139. A) This patient has obviously lost a lot of blood because of the motorcycle wreck. The most advantageous therapy is to replace what was lost in the accident. This would be whole blood, which is much superior to a plasma infusion, because the patient is also receiving red blood cells that have a much superior oxygen-carrying capacity than the plasma component of blood. Sympathetic nerves are firing very

rapidly in this condition, and an infusion of a sympathomimetic agent would be of little advantage. TMP13 pp. 300-301

140. C) In hemorrhagic shock, anaphylactic shock, and neurogenic shock, the venous return of blood to the heart markedly decreases. However, in septic shock the cardiac output increases in many patients because of vasodilation in affected tissues and a high metabolic rate causing vasodilation in other parts of the body.

TMP13 p. 300

141. E) This patient has been hemorrhaging, and the optimal therapy is to replace the blood he has lost. Unfortunately, no blood is available, and therefore we must choose next best therapy, which is increasing the volume of his blood. Thus, plasma infusion is the next best therapy because its high colloid osmotic pressure will help the infused fluid stay in the circulation much longer than would a balanced electrolyte solution.

ТМР13 рр. 300-301

142. B) Intestinal obstruction often causes severe reduction in plasma volume. Obstruction causes a distention of the intestine and partially blocks the venous blood flow in the intestines. This partial blockage results in an increased intestinal capillary pressure, which causes fluid to leak from the capillary into the

walls of the intestines and also into the intestinal lumen. The leaking fluid has a high protein content very similar to that of the plasma, which reduces the total plasma protein and the plasma volume. Therefore, the therapy of choice would be to replace the fluid lost by infusing plasma.

ТМР13 рр. 300-301

143. A) In progressive shock, because of the poor blood flow, the pH in the tissues throughout the body decreases. Many vessels become blocked because of local blood agglutination, which is called "sludged blood." Patchy areas of necrosis also occur in the liver. Mitochondrial activity decreases and capillary permeability increases. There is also an increased release of hydrolases by the lysosomes and a decrease in cellular metabolism of glucose.

ТМР13 р. 297

144. A) Anaphylaxis is an allergic condition that results from an antigen-antibody reaction that takes place after exposure of an individual to an antigenic substance. The basophils and mast cells in the pericapillary tissues release histamine or histamine-like substances. The histamine causes venous dilation, dilation of arterioles, and greatly increased capillary permeability with rapid loss of fluid and protein into the tissue spaces. This response reduces venous return and often results in anaphylactic shock.

ТМР13 рр. 300-301