
Anti-arrhythmic Drugs

Dr. Alia Shatanawi

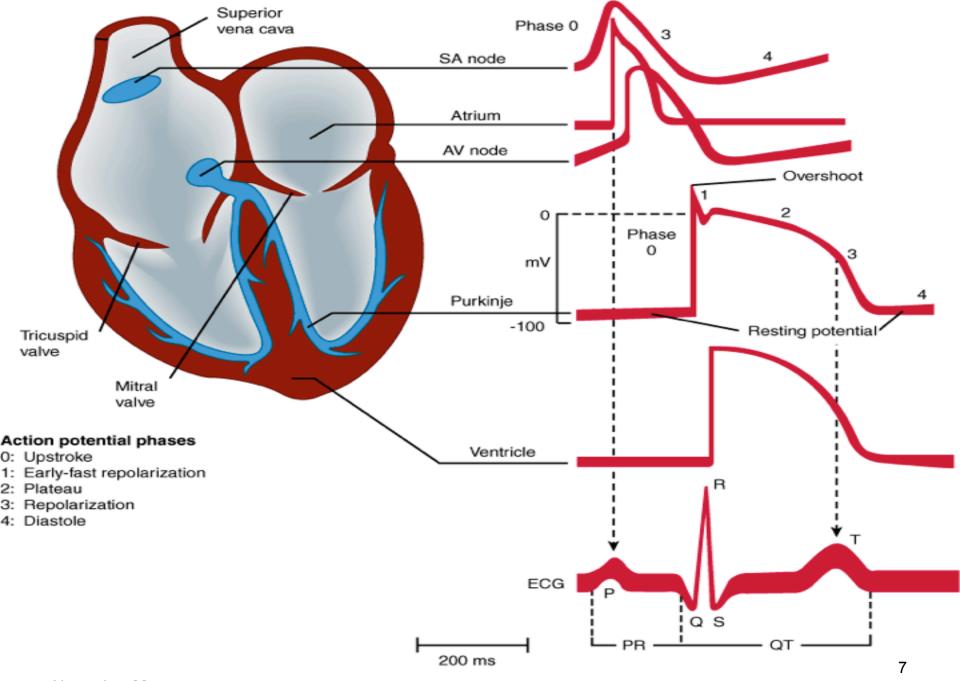
Cardiac Arrhythmias

- Definition.
- Etiology:
- Hereditary
- Acquired
- Types:
- Abnormalities of Impulse Formation:
- Rate disturbances.
- Triggered automaticity.
- Abnormalities of Impulse Conduction:
- Blocks.
- Reentry.

Cardiac Arrhythmias

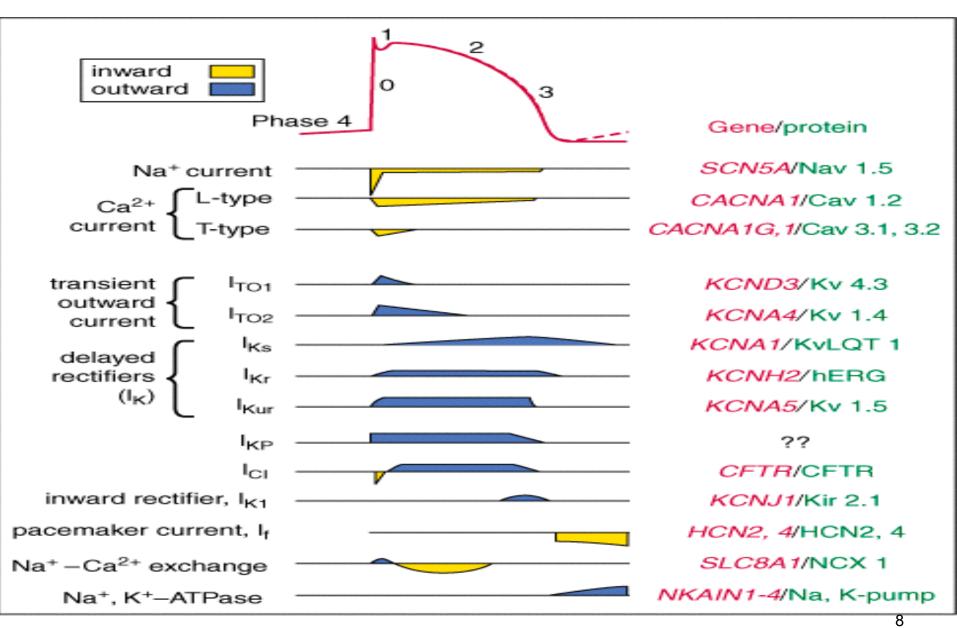
- 1. Disorders of rate, rhythm, electrical impulse generation or conduction in the heart.
- 2. Disorders can range from benign to life threatening.
- 3. Anti-arrhythmic drugs alter movement of ions in cardiac cells.
- 4. All these drugs can aggravate or generate arrhythmias.

Cardiac Causes of Arrhythmias

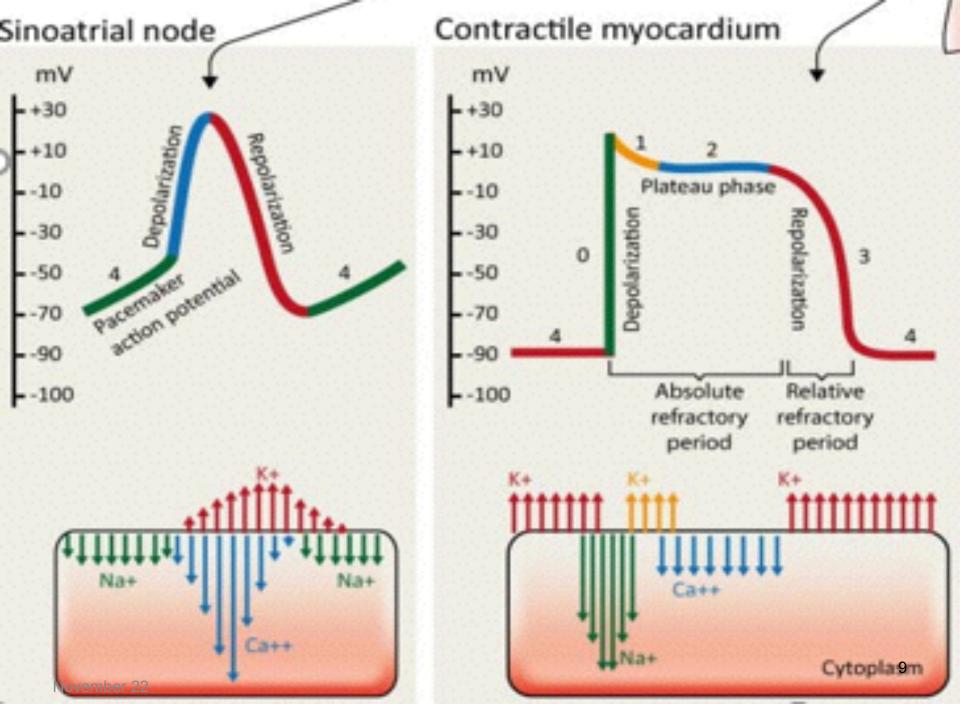

- Electrolyte imbalance.
- Acid-Base imbalance.
- Hypoxia.
- Drugs:
 - Digitalis
 - Anesthetics
 - Tricyclic
 - Diuretics
- Bronchodilators: sympathomimetic.
- Reflexes.

Non Cardiac Causes of

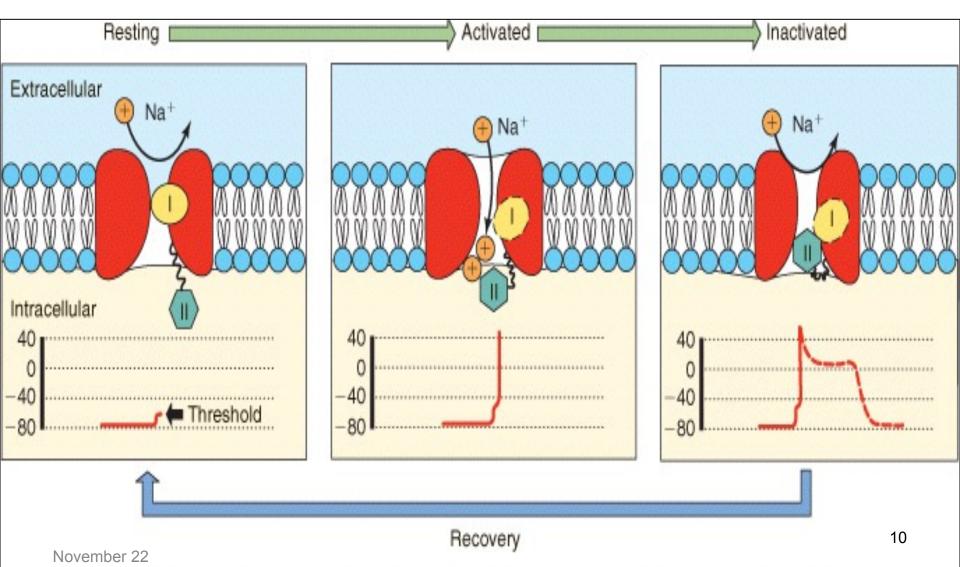
- Arrhythmias
 Ischemic heart disease.
- Inflammation.
- Trauma e.g. heart surgery.
- Congestive heart failure.
- Hypotension.
- Electrolyte imbalance.
- A aid Daga imbalance


Electrical Activity of the Heart

- Cardiac cells undergo depolarization and repolarization to initiate cardiac action potentials: 60 times/ minute.
- The shape and duration of each action potential are determined by the activity of ion channel protein complexes in the membranes of individual cells.
- Ion channel function can be disrupted by inherited mutation/polymorphism, acute ischemia, sympathetic stimulation, or myocardial scarring, to create arrhythmias.

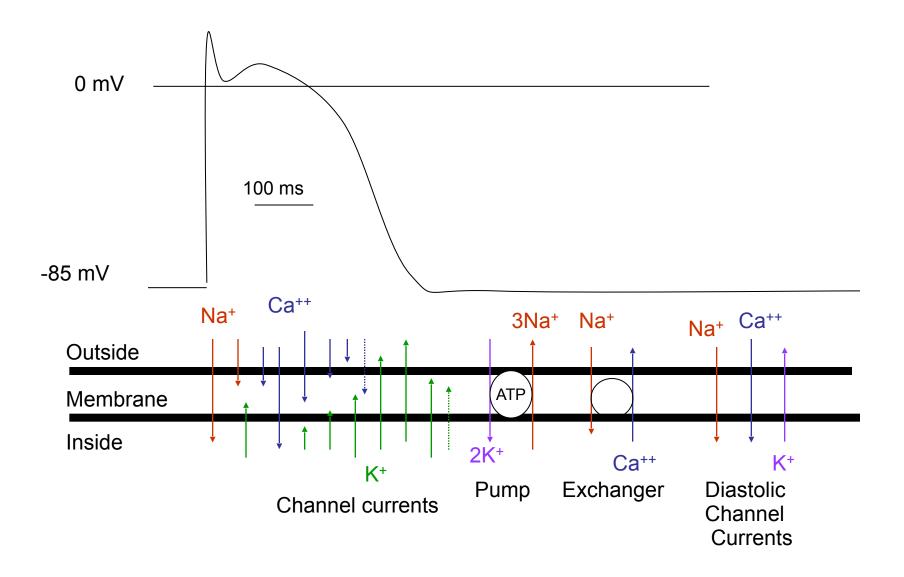

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Action Potential Changes



Sour_{®®le}Ketzung BG, Masters SB, Trevor AJ: *Basic* & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.


Cardiac Na+ channels

© Elsevier 2005. Minneman & Wecker: Brody's Human Pharmacology 4e www.studentconsult.com

SA node automaticity +20 L-type I_{Ca}、 0 I_{Kr} I_{Ks} Membrane _20 Funny potential (mV) Threshold -40 -60 T-type I_{Ca} -80 1.6 0.8 Time (s)

Action Potential

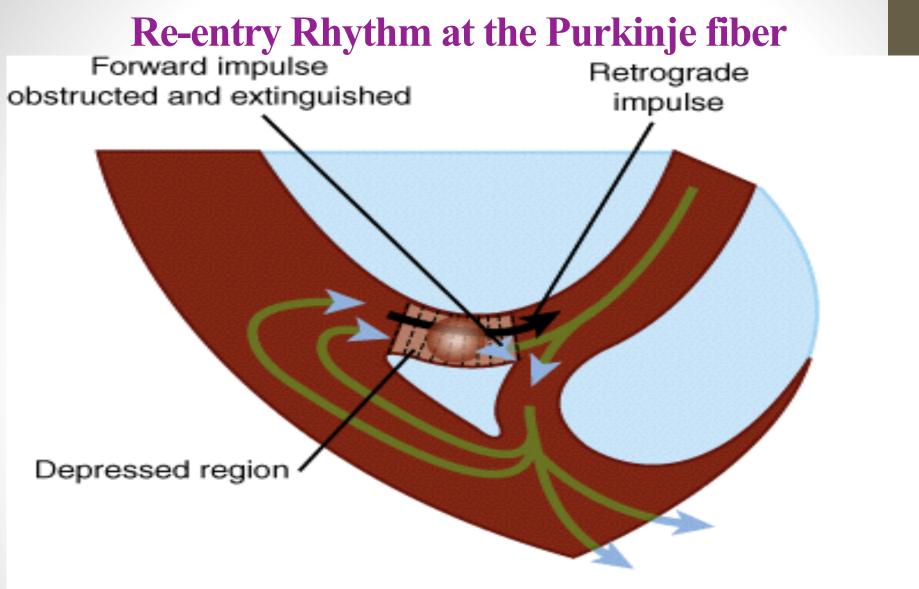
Cardiac Electrophsiology

- A. Resting Membrane Potential (RMP) A voltage difference (about -90 mV) exists across the surface membrane of all cardiac cells due to uneven distribution of ions. This is created primarily by active cell membrane transport of Na+ (3 out) and K+ (2 in) by Na+, K+-ATPase.
- B. Action Potential (AP) When cardiac cells are electrically excited, a sequence of voltage changes (depolarization and repolarization) occur as a function of time. These changes in voltage are due to changes in conductance of ions (mainly Na+, Ca++, and K+) across the cell membrane.

Distribution of ions at rest [mM]

Ion	Intracellular	Extracellular
Na ⁺	10	145
K ⁺	140	4
Cľ	4	115
Ca ⁺⁺	<0.001	2
		$\pm \pm \pm \pm \pm \pm \pm \pm \pm$ Cardiac cell

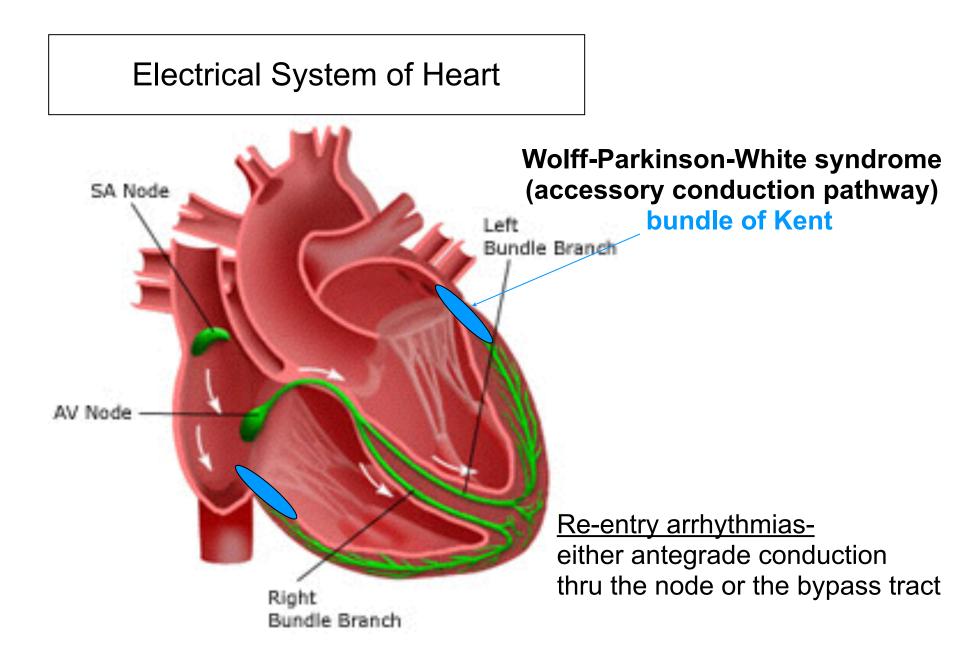
Action Potential


- <u>Phase 0</u>: rapid depolarization due to influx of Na⁺ via voltage dependent sodium channels.
- <u>Phase 1</u>: partial repolarization due to inactivation of Na⁺ channels
- <u>Phase 2</u>: plateau from slow Ca²⁺ influx via L-type voltage sensitive Ca²⁺ channels
- <u>Phase 3</u>: replolaization due to inactivation of Ca²⁺ and efflux of K⁺ due to activation of K⁺ channels
- <u>Phase 4</u>: (the pacemaker potential) inward movement of Na⁺ and Ca²⁺

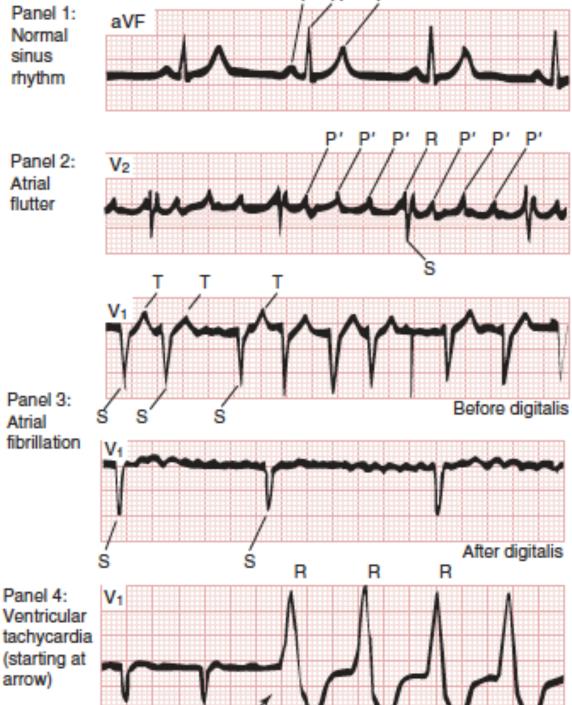
Normal Circuitry at peripheral Purkinje fiber Purkinje twig

A. Normal conduction

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology,* 11th Edition: http://www.accessmedicine.com


Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

B. Unidirectional block


Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology,* 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Pre-requisites for Reentry (Circus Movement)

- Anatomic or physiologic obstacle.
- Unidirectional block.
- Conduction time around the circuit must be longer than the effective refractory period.

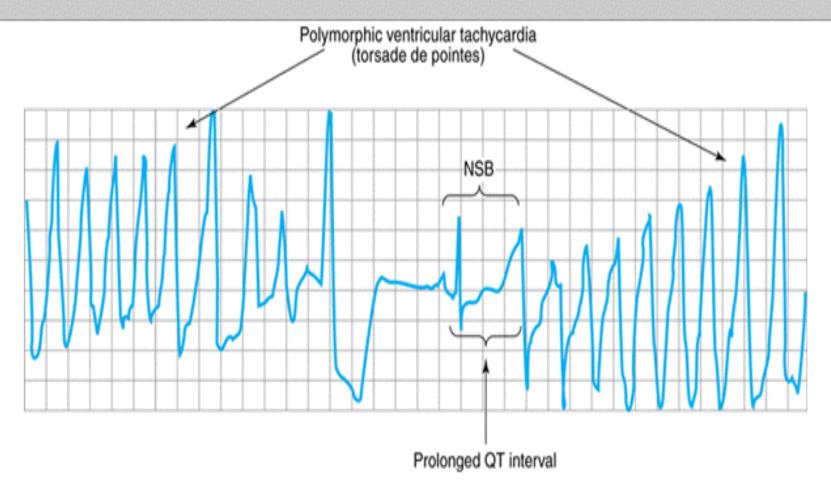
ECG of some **Arrhythmias**

Panel 4: Ventricular (starting at arrow)

Torsade de Pointes Polymorphic Ventricular Tachycardia

LQT, syncope, and sudden death. Causes:

- Familial long QT interval
- Drug Induced (drugs which prolong APD).
- Genetic mutations: 300 different mutations in at least 8 ion channel genes.


Mechanisms:

- Increased inward current (GF), or
- Decreased outward current (LF) during the plateau.

Туре	Chromosom e Involved	Defective Gene	lon Channel or Proteins Affected	Result
LQT-1	11	KCNQ1	I _{Ks}	LF
LQT-2	7	KCNH2 (HERG)	I _{Kr}	LF
LQT-3	3	S CN5 A	I _{Na}	GF
LQT-4	4	Ankyrin-B ¹		LF
LQT-5	21	KCNE1 (minK)	I _{Ks}	LF
LQT-6	21	KCNE2 (MIRP1)	I _{Kr}	LF
LQT-7 ²	17	KCN J2	l _{KIr}	LF
LQT-8 ³	12	CACNA1c	l _{Ca}	GF
SQT-1	7	KCNH2	I _{Kr}	GF
SQT-2	11	KCNQ1	I _{Ks}	GF
SQT-3	17	KCN J2	I _{KIr}	GF
CPVT-1 ⁴	1	h Ry R2	Ryanodine receptor	GF
CPVT-2	1	CAS Q2	Calsequestrin	LF
Sick sinus syndrome	15 or 3	HCN4 or SCN5A ⁵		LF
Brugada syndrome	3	S CN5 A	I _{Na}	LF
PCCD	3	S CN5 A	I _{Na}	LF
Familial atrial fibrillation	11	KCNQ1	I _{Ks}	GF

TABLE 14-1 Molecular and genetic basis of some cardiac arrhythmias.

Figure 14-8

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 12th edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Electrocardiogram from a patient with the long QT syndrome during two episodes of torsades de pointes. The polymorphic ventricular tachycardia is seen at the start of this tracing and spontaneously halts at the middle of the panel. A single normal sinus beat (NSB) with an extremely prolonged QT interval follows, succeeded immediately by another episode of ventricular tachycardia of the torsades type. The usual symptoms include dizziness or transient loss of consciousness. (Reproduced, with permission, from Basic and Clinical Pharmacology, 10th edition, McGraw-Hill, 2007.)

Torsade de Pointes

Risk Factors:

- Bradycardia.
- Hypokalemia.
- Triggered upstrokes.
- Drugs which ↑ APD.

Treatment:

- K+
- ↓ Triggered upstrokes (<u>β Blockers</u> or Mg++)

<u>www.sads.org</u> sudden arrhythmia death syndrome foundation

Other Congenital Arrhythmias

Short QT Syndrome:

- GF mutations in three potassium channel genes(KCNH2, KCNQ1, and KCNJ2).
- <u>Chatecholaminergic Polymorphic Ventricular</u> <u>Tachycardia (CPVT):</u>
 - Stress or emotion-induced syncope.
 - Caused by mutations in sarcoplasmic proteins that control calcium.
 - Inhibiting RyR2 channels with flecainide appears to prevent CPVT.

Other Congenital Arrhythmias

- <u>Sick Sinus Syndrome:</u>
 - Mutations in HCN4 and SCN5A
- Brugada Syndrome:
 - Ventricular fibrillation, persistent ST elevation, and BBB(5 in 10,000).
 - Linked to LF mutations in SCN5A
- Familial Atrial Fibrillation:
 - Linked to GF mutation in the potassium channel gene, KCNQ1.

Nonpharmacologic Therapy

- Surgery.
- Radiofrequency Catheter Ablation(إستئصال).

- Cryoablation(الاستئصال بالتبريد).
- Implantable Cardioverter- Defibrillator (ICD).
- Gene therapy!!!!.

Anti-arrhythmias Drugs

• Effect of drugs on automaticity

Most of the arrhythmic agents suppress automaticity by blocking either sodium or calcium channels to reduce the ratio of these ions to potassium,

thus result in a reduction in the depolarization or diastolic and raises the threshold of discharge to a less negative voltage.

• Effect of drugs on conduction abnormalities

Prevent reentry by slowing conduction and/or increasing the refractory period.

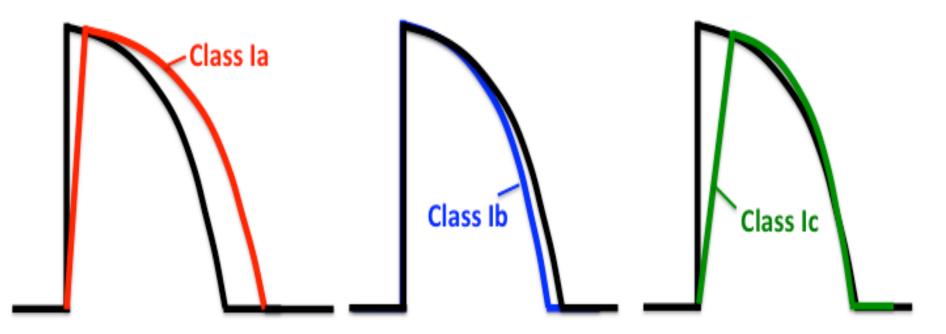
Anti-arrhythmias Drugs

- Available anti-arrhythmic drugs suppress arrhythmias by blocking flow through specific ion channels or by altering autonomic function.
- Anti-arrhythmic drug therapy can have two goals: Termination of an ongoing arrhythmia or Prevention of an arrhythmia.
- Anti-arrhythmic drugs, might help control arrhythmias, but; unfortunately, also might cause them, especially during long-term therapy.

Principle of Mechanism of action of Anti-arrhythmias Drugs

- Readily bind to activated channels or inactivated channels but bind poorly to rested channels. i.e.: Use -Dependent or State-Dependent.
- Channels in normal cells will rapidly lose the drug from the receptors during the resting portion of the cycle.
- This selectivity is lost with increasing doses, leading to drug-induced arrhythmias.
- Also, these drugs may become" *Proarrhythmic or Arrhythmogenic*" during fast heart rates, acidosis, hyperkalemia, or ischemia.

Table 21.2 Summary of antidysrhythmic drugs (Vaughan Williams classification)


Class	Example(s)	Mechanism
la	Disopyramide	Sodium-channel block (intermediate dissociation)
lb	Lidocaine	Sodium-channel block (fast dissociation)
lc	Flecainide	Sodium-channel block (slow dissociation)
II	Propranolol	β-Adrenoceptor antagonism
III	Amiodarone, sotalol	Potassium-channel block
IV	Verapamil	Calcium-channel block

classification of antiarrhythmic drugs

- <u>Class 1 action</u> is sodium channel blockade. Subclasses of this action reflect effects on the action potential duration (APD) and the kinetics of sodium channel blockade.
- Class 1A action prolong the APD and dissociate from the channel with intermediate kinetics.
- Class 1B action shorten the APD in some tissues of the heart and dissociate from the channel with rapid kinetic.
- Class 1C action have minimal effects on the APD and dissociate from the channel with slow kinetics.

Class I Antiarrhythmic Drug Effects

On the Ventricular Action Potential:

On the ECG:

↑QRS & **↑**QT

VQT

classification of antiarrhythmic drugs

- Class 2 action is sympatholytic. Drugs with this action reduce B-adrenergic activity in the heart.
- Class 3 action manifests as prolongation of the APD. Most drugs with this action block the rapid component of the delayed rectifier potassium current, I Kr .
- Class 4 action is blockade of the cardiac calcium current. This action slows conduction in regions where the action potential

	Block of Sodium Channels		Refractory Period				
Drug	Normal Cells	Depolarized Cells	Normal Cells	Depolarized Cells	 Calcium Channel Blockade 	Effect on Pacemaker Activity	Sympatholytic Action
Adenosine	0	0	0	0	+	0	+
Amiodarone	+	++++	11	↑ ↑	+	$\downarrow\downarrow$	+
Diltiazem	0	0	0	0	++++	$\downarrow\downarrow$	0
Disopyramide	+	++++	1	↑ ↑	+	\downarrow	0
Dofetilide	0	0	↑ (?	0	0	0
Dronedarone	+	+	na	na	+	na	+
Esmolol	0	+	0	na	0	$\downarrow\downarrow$	+++
Flecainide	+	++++	0	↑ (0	$\downarrow\downarrow$	0
Ibutilide	0	0	1	?	0	0	0
Lidocaine	0	++++	Ļ	↑ ↑	0	$\downarrow\downarrow$	0
Mexiletine	0	++++	0	↑ ↑	0	$\downarrow\downarrow$	0
Procainamide	+	++++	1	↑ ↑↑	0	\downarrow	+
Propafenone	+	++	↑	↑ ↑	+	$\downarrow\downarrow$	+
Propranolol	0	+	Ļ	↑ ↑	0	$\downarrow\downarrow$	++++
Quinidine	+	++	↑ (↑ ↑	0	$\downarrow\downarrow$	+
Sotalol	0	0	↑ ↑	↑ ↑↑	0	$\downarrow\downarrow$	++
Verapamil	0	+	0	↑ (++++	$\downarrow\downarrow$	+
Vernakalant	+	+	+	+	na	0	na

TABLE 14-2 Membrane actions of antiarrhythmic drugs.

na, data not available.

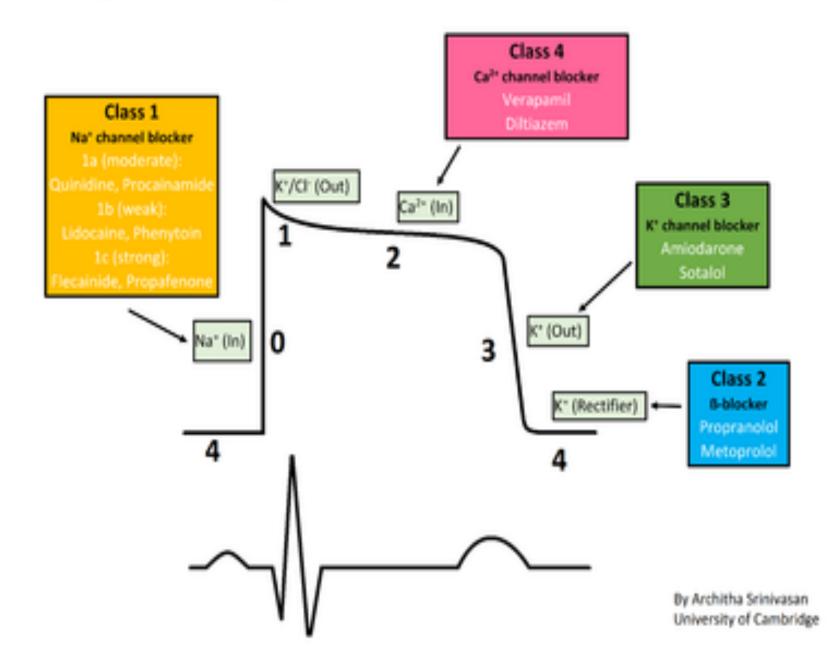
	Effect on SA Nodal Rate	Effect on AV Nodal Refractory Period	PR Interval	QRS Duration	QT Interval	Usefulness in Arrhythmias		
Drug						Supra- ventricular	Ventricular	- Half-Life
Adenosine	↓↑	↑↑↑	^1	0	0	+++++	?	< 10 s
Amiodarone	$\downarrow\downarrow$	↑ ↑	Variable	↑	1111	++++	+++	(weeks)
Diltiazem	¢↓	↑ ↑	↑	0	0	++++	-	4–8 h
Disopyramide	↑↓¹²	↑↓²	↑↓²	1 1	↑ ↑	+	+++	7–8 h
Dofetilide	↓(?)	0	0	0	1 1	++	None	7 h
Dronedarone					↑	++++	-	24 h
Esmolol	$\downarrow\downarrow$	↑ ↑	↑ ↑	0	0	+	+	10 min
Flecainide	None,↓	î	î	111	0	+3	+++++	20 h
Ibutilide	↓ (?)	0	0	0	1 1	++	?	6 h
Lidocaine	None ¹	None	0	0	0	None ⁴	+++	1–2 h
Mexiletine	None ¹	None	0	0	0	None	+++	12 h
Procainamide	\downarrow^1	↑↓²	↑↓²	1 1	1 1	+	++++	3-4 h
Propafenone	0,↓	Ť	↑	111	0	+	+++	5–7 h
Propranolol	$\downarrow\downarrow$	↑ ↑	11	0	0	+	+	5 h
Quinidine	1↓ ¹²	↑↓²	↑↓²	1 1	↑ ↑	+	++++	6 h
Sotalol	$\downarrow\downarrow$	↑ ↑	↑ ↑	0	111	+++	+++	7 h
Verapamil	$\downarrow\downarrow$	↑ ↑	↑ ↑	0	0	+++	-	7 h
Vernakalant		Ŷ	↑			++++	-	2 h

TABLE 14-3 Clinical pharmacologic properties of antiarrhythmic drugs.

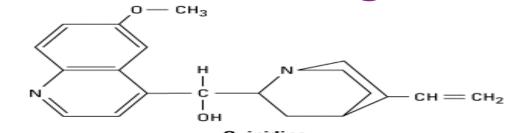
¹May suppress diseased sinus nodes.

²Anticholinergic effect and direct depressant action.

³Especially in Wolff-Parkinson-White syndrome.


⁴May be effective in atrial arrhythmias caused by digitalis.

⁵Half-life of active metabolites much longer.


		Example	Mechanism of action	Electrophysiological actions	Clinical use	
tion	Class la	Disopyramide }	Na* channel block	Reduced rate of depolarisation of action potential, increased ERP,	Ventricular fibrillation, especially associated with myocardial	
lical	Class lb	Lidocaine		decreased AV conduction	infarction	
Not classified by Vaughan Williams classification system	Class II	Propranolol, atenolol	β-Adrenoceptor antagonism	Slowed pacemaker activity, increased AV refractory period	Dysrhythmia prevention in myocardial infarction; paroxysmal atrial fibrillation due to sympathetic activity	
	Class III	Amiodarone, sotalol	K ⁺ channel block	Increased action potential duration and increased ERP	Atrial fibrillation; ventricular fibrillation	
	Class IV	Verapamil	Ca2+ channel block	Decreased APD, slowed AV conduction	Supraventricular tachycardias; atrial fibrillation	
		Adenosine	K ⁺ channel activation	Slowed pacemaker activity, slowed AV conduction	Given i.v. for supraventricular tachycardias	
		Digoxin	K ⁺ channel activation (vagal action)	Slowed AV conduction (block)	Atrial fibrillation	
		Magnesium chloride	? Ca2+ channel block		Ventricular fibrillation; digoxin toxicity	

APD, action potential duration; AV, atrioventricular; ERP, effective refractory period.

Drugs Affecting the Cardiac Action Potential

Class 1A Drugs

Prototype, related to quinine.

- Cinchona tree \rightarrow Antipyretic Quinine = Antimalarial.
- Inhibits Na channels.

Quinidine:

- Also, inhibits α and muscarinic receptors.
- Slows upstroke, conduction, and prolongs APD and QRS duration.

Quinidine

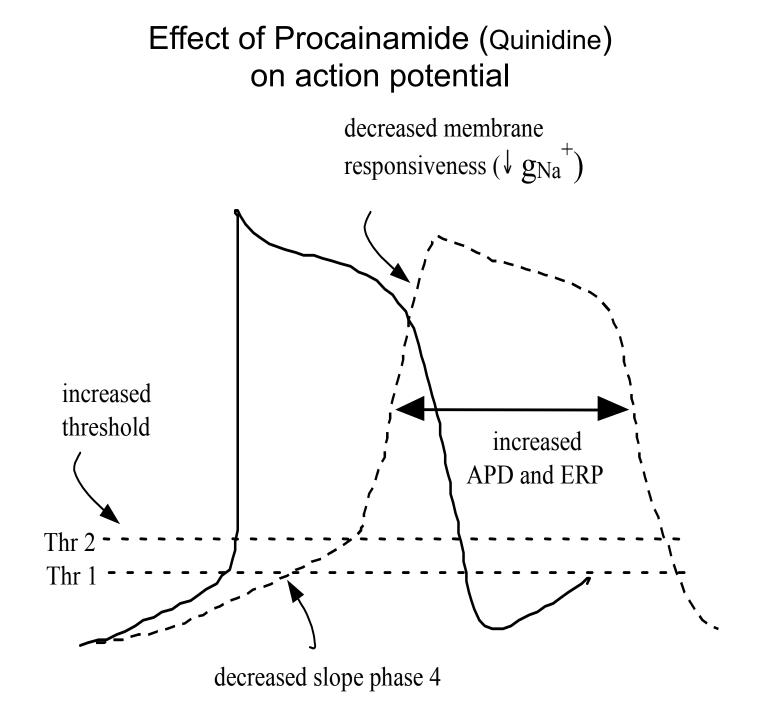
- Quinidine Bind to sodium channels and prevent sodium influx, and so slower the rapid depolarization.
- Inhibit arrhythmias, which caused by increased automoticity, and also prevent reentry arrhythmias by producing bidirectional block.
- Use nowadays restricted to patients with "normal hearts"(no failure, no ischemia), but have atrial or ventricular arrhythmias.

Quinidine

Side Effects: Toxic

- Nausea (18%), Diarrhea (33%).
- Headache, Dizziness, and tinnitus= Cinchonism
- Hypersensitivity, fever, rash, angioedema.
- Thrombocytopenia.
- Excessive prolongation of QT interval, slowed conduction.
- Hypotension.
- [↑]Serum Digoxin levels.
- Sudden death.

Class 1A Drugs


- Oral, but has short $t\frac{1}{2}$.
 - L.E. (30% of patients Tx over 6 months).
 - Acetylated -> NAPA (has Class III actions)

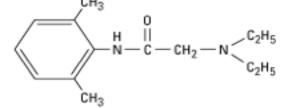
<u>Disopyramide</u>

PROCAINAMIDE

- structurally related to the local anesthetic procaine

- 1. Major electrophysiological effects in heart:
 - a. <u>Decrease automaticity</u> decrease phase 4 spontaneous depolarization and increase threshold.
 - b. <u>Decrease conduction velocity</u> throughout heart due to decrease in membrane responsiveness (Vmax).
 - c. <u>Increase</u> in action potential duration and <u>refractory period</u> in atrial and ventricular cells - blocks K⁺ efflux

PROCAINAMIDE


- 2. Other Cardiac Effects
 - a. ECG may be greatly altered; P-R, QRS and Q -T intervals are prolonged.
 - b. Possible excessive slowing of conduction.
- 3. Adverse Effects
 - a. Hypotension with large i.v. doses
 - b. Lupus erythematosis-like (auto-immune) syndrome may occur.
 - c. Prolongs QT interval, possible "torsades de pointe"
- 4. Pharmacokinetics
 - a. Can be given orally, I.V., or I.M.
 - b. Has short T1/2 (3-4 hrs); frequent administration or use sustained release formulation.
 - c. Some individuals rapidly acetylate procainamide (NAPA cardioactive metabolite).

Uses – atrial and ventricular arrhythmias (acute MI)

Class 1B Drugs

Lidocaine(Lignocaine, or Xylcaine):

- High affinity to bind with activated and inactivated Na+ channels with rapid kinetics.
- Acts selectively in ischemic ventricular tissue to promote conduction & block reentry.
- More effective with ↑ K+.

Not effective in atrial arrhythmas^{Lidecaine}

Class 1B Drugs

Lidocaine:

Kinetics:

- Well absorbed, but ineffective orally, due to first pass effect, so given IV.
- Well distributed, including the brain.

Side Effects:

- Least cardiotoxic of the class, except for hypotension with high doses due to depression of the myocardium.
- CNS: paresthesia, tremor, nausea, slurred speech, and convulsions.
- Was routinely given to all MI patients to prevent ventricular arrhythmias.

Class 1B Drugs

Tocainide:

- Oral analog of lidocaine.
- CNS, GI and blood dyscrasia.

<u>Mexiletine:</u>

- Oral analog of lidocaine.
- Neurologic side effects.

Phenytoin:

- Antiepileptic.
- Useful in:
 - Digitalis- induced arrhythmias.
 - Arrhythmias after congenital heart surgery.
 - Congenital prolonged QT interval.

Class 1C Drugs

Flecainide:

- Potent blocker of Na + and K+ channels.
- Negative inotropic effect.
- Proarrhythmic \rightarrow ventricular.
- Effective in supra ventricular tachycardia with normal hearts.

Class IC - Flecainide

General Properties:

- a. Marked affinity for and blockade of Na⁺ channels.
- b. Marked slowing of conduction velocity (shallow phase 0 slope).
- c. Little change in AP duration
- d. Useful in resistant, life-threatening ventricular arrhythmias.

Toxicity:

- a. **Proarrhythmic, particularly in MI patients.**
- b. Blurred vision &CNS side effects
- c. Ventricular arrhythmias and sudden death.

Class 1C Drugs

Propafenone:

- Blocks Na+ channels but also has beta blocking and Ca++ blocking activity.
- No effect on QT interval.
- Used for supraventricular arrhythmias.
- Side effects: metallic taste, constipation, and arrhythmias.

Class II Drugs

Propranolol

- Besides beta blocking, membrane stabilization, and intrinsic sympathomimetic activities, has effective antiarrhythmic activity
- Very effective, well tolerated, and documented to reduce mortality after acute myocardial infarction by reducing arrhythmias, besides reducing myocardial oxygen requirements.

CLASS II

β- ADRENERGIC BLOCKING AGENTS Propranolol

- <u>Cardiac action</u> blocks effects of catecholamines on: a. Automaticity (S-A node and elsewhere; heart rate) b.A-V conduction c. Refractory period
- 2. <u>Electrophysiological effects (other)</u>
 a. Quinidine-like effects on membranes
 b. Depression of conduction velocity

Beta-Adrenergic Blockers

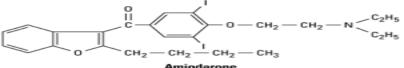
USES

- a. Paroxysmal atrial tachycardia
- b. Arrhythmias associated with hydrocarbon anesthetics
- c. Arrhythmias resulting from tricyclic antidepressants or L-dopa
- d. Pheochromocytoma

ADVERSE EFFECTS

- a. Negative inotropic action on heart
- b. Bronchospasm
- c. Depression and nightmares (lipid-soluble agent)
- d. Rebound increase in sensitivity to B-adrenergic agonists on withdrawal
- e. A-V block

Carvedilol – β and α adrenergic blocking agent


Class II Drugs

Acebutolol

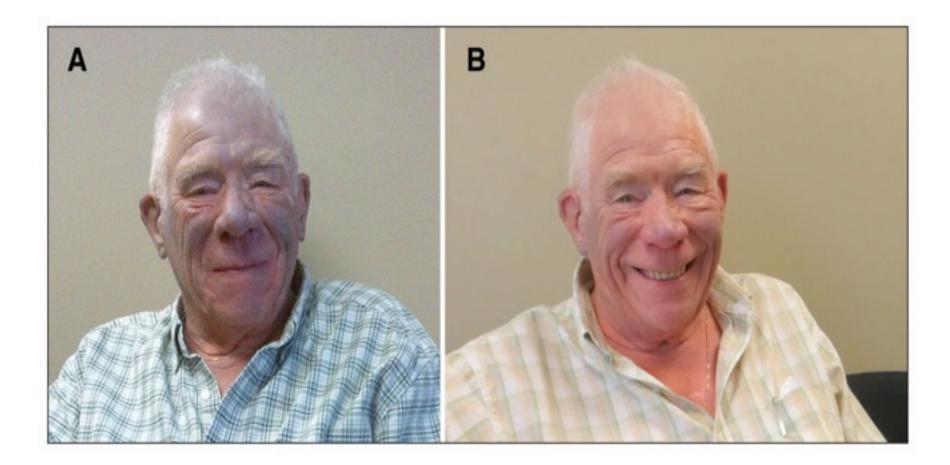
- Metoprolol
- **B1 selective drugs.**
- Esmolol: Short acting, used in intraoperative and acute arrhythmias
- Salotol : non selective B blocker(prolong action potential)

Class III Drugs

Amiodarone:

- Blocks K+ channels and markedly prolongs APD. Also:
- Class I actions.
- Blocks α and β Receptors.
- Ca++ blocking actions.
- Effect is due to alteration of lipid membrane.
- Reserved for life-threatening atrial and ventricular arrhythmias.
- Slows heart rate and AV conduction.
- Low incidence of TdP despite significant QT prolongation.
- Peripheral vasodilator (only with IV).

Class III Drugs


Amiodarone:

- Given IV (Loading dose 10gm) and orally.
- Has slow kinetics (t¹/₂ 25-110 days), metabolized by CYP3A4 enzymes.

<u>Toxicity:</u> mainly extracardiac and dose related.

- Lung fibrosis (1%).
- CNS.
- Thyroid(hypo and hyper).
- GI and liver.
- Corneal deposits,
- Skin: photodermatitis and discoloration(Figure).
- ↑ Digoxin & Anticoagulants.
- Interactions: affected by CYP3A4 activity.

Blue-man Syndrome

Class III Drugs

- **Bretylium Tosylate:**
- Originally an antihypertensive, but tolerance develops.
- Releases NE, then ↓ Release / Reuptake
- Rarely used, except for prevention of ventricular fibrillation after failure of cardioversion and lidocaine.
- Hypotension, Parotid swelling.

Class III Drugs

Sotalol:

- Beta blocker but has Class III actions.
- For atrial and ventricular arrhythmias.
- Causes bradycardia, HF, and Prolongation of QT.
- Ibutilide.
- <u>slows cardiac depolarization by</u>
 <u>blockadeof the rapid component (I Kr) of</u>
 <u>the delayed rectifier potassium current.</u>
- Dofetilide.

<u>Ibutilide</u>

- Slows cardiac depolarization by blockade of the rapid component (I_{Kr}) of the delayed rectifier potassium current.
- Activation of slow inward sodium current has also been suggested as an additional mechanism of action potential prolongation.
- Intravenous ibutilide is used for the acute conversion of atrial flutter and atrial fibrillation to normal sinus rhythm.
- More effective in atrial flutter
- Most important adverse effect is excessive QT-interval prolongation and torsades de pointes.
- Patients require continuous ECG monitoring for 4 hours until QTc returns to baseline.

Class IV Drugs (Ca++ Channel Blockers)

<u>Verapamil</u>

<u>Diltiazem</u>

Block activated and inactivated L-type Ca++ channels.

- Effects more marked in tissues that fire frequently, less completely polarized at rest, and those dependant on Ca++ (SA node and AV node).
- Paroxysmal Supraventricular Tachycardia.
- Vasodilators, and have negative inotropic effects.
- Can cause severe AV block in diseased hearts.
- Relatively safe: Constipation, gastric discomfort, vertigo, headache, nervousness, pruritis.
- ↑ Digoxin levels.

Table 21.1 Antidysrhythmic drugs unclassified in the Vaughan Williams system

Drug	Use		
Atropine	Sinus bradycardia		
Adrenaline (epinephrine)	Cardiac arrest		
Isoprenaline	Heart block		
Digoxin	Rapid atrial fibrillation		
Adenosine	Supraventricular tachycardia		
Calcium chloride	Ventricular tachycardia due to hyperkalaemia		
Magnesium chloride	Ventricular fibrillation, digoxin toxicity		

Magnesium:

- Works on Na+/K+ ATPase, Na+ channels, certain K+ channels and Ca++ channels.
- Effective IV in refractory digitalis- induced ventricular arrhythmias only in hypomagnesemic patients.
- Effective in TdP patients even if serum Mg++ is normal.

Potassium salts:

- For digitalis- induced arrhythmias with hypokalemia.
- Depress ectopic pacemakers and slow conduction.

Miscellaneous Agents -

Digitalis - sensitizes baroreflexes to increase vagal tone and depress sympathetic activity to heart.

Adenosine brief slowing of AV conduction

Digoxin

Digoxin:

- Old fashioned agent for heart failure and atrial arrhythmias.
- Direct Actions.
- Vagotonic Effects.
 - ↑ AV refractoriness.

DIGOXIN drug for treatment of atrial fibrillation and flutter

1. Electrophysiological actions

A. Prolong A-V refractory period

B. Effect largely through sensitization of baroreflex receptors; Enhancement of <u>vagal</u> tone and withdrawal of sympathetic nerve activity.

2. Therapeutic action:

Reduces ventricular rate by making A-V node more refractory to the numerous atrial impulses.

3. Adverse actions:

Arrhythmias (PVCs, AV conduction block), nausea, and blurred vision - often with halos.

Adenosine

Naturally occurring nucleoside.

- Stimulates purinergic(P1) receptors.
- Activates inward rectifier K+ current and inhibits Ca++ current.
- Very short acting (t 1/2 10 seconds).
- \downarrow Phase 4 depolarization in SA node.
- \downarrow AV conduction.
- No effect on ventricles.

Adenosine

90-95% effective in supraventricar tachycardia, replaced verapamil.

- Less effective in the presence of adenosine receptor blockers, e.g. theophylline and caffeine.
- Can cause transient flushing (20%), chest tightness, AV block, headache, hypotension, nausea, and paresthesia.

ADENOSINE

Concentration of adenosine rises with hypoxia as ATP production is reduced. Use in paroxysmal supraventric tachycardias (PSVT).

1. Major actions:

- a. Acts on A_1 receptors to inhibit adenylate cyclase (\downarrow cAMP).
- b. Activates K+ currents and hyperpolarizes nodes
- c. Slows conduction in AV node.
- 2. Pharmacokinetics:
 - a. rapid onset of action, i.v. 10-20 seconds b. very short half life - 10 seconds

3. Adverse Effects:

- a. hypotension, facial flushing, headache
- b. Possible "symptoms" of angina
- c. bronchoconstriction, arrhythmias
- Uses: Treatment of PSVT (nodal reentry) / diagnosis of supraventricular <u>vs</u> ventricular tachycardia.