

Amjad Bani Hani

CABG

INTRODUCTION

- HISTORY OF CARDIAC SURGERY
- CORONARY ARTERY ANATOMY
- ATHEROSCLEROSIS CAD
- DIAGNOSIS
- MANAGEMENT
- SURGICAL INDICATIONS / TECHNIQUES

Adult Cardiac Surgery: Ischemic Heart Disease

•Alexis Carrel-

"In certain cases of angina pectoris, when the mouth of the coronary is calcified, it would be useful to establish a complementary circulation for the lower part of the arteries. I attempted to perform an...anastomosis between the descending aorta and the left coronary. It was, for many reasons, a difficult operation."

American Surgical Association, 1910

- Claude Beck
 - **1930's** sought to increase myocardial blood flow indirectly with pericardial fat and omentum.
- Arthur Vineberg
 - **1940's** Mobilization of left internal mammary artery with implantation of bleeding end into the left ventricle.
 - **1964** follow-up study on 140 patients

33% mortality85% relief from angina

• Mason Sones,

1950's- cine coronary arteriography.1962- direct and reproducible catheterization of the coronary arteries.

"Collectively, all of the cardiological advances in this century pale in comparison with this priceless achievement." Floyd Loop,

MD

John H. Gibbon, Jr.

"During the long night, helplessly watching the patient struggle for life as her blood became darker and her veins more distended, the idea naturally occurred to me that if it were possible to remove some of the blue blood ... put oxygen into that blood and allow carbon dioxide to escape from it, and then to inject continuously the now-red blood back into the patient's arteries, we might have saved her life."

- Heart-lung machine
- May 6, 1953- ASD closure

Heart Lung Machine

- 1962- David C. Sabiston, Jr.-
 - Aortocoronary saphenous vein bypass
- 1964-KOLOSOV LIMA -LAD IN Russia

Adult Cardiac Surgery: Ischemic Heart Disease (CABG)

• Early and widespread acceptance of coronary bypass was delayed.

• Best known cooperative studies (1970-80's) were the; VA Coronary Artery Surgery Study European Coronary Surgery Study

Coronary Anatomy

Coronary Anatomy

Coronary Anatomy

The Normal Heart - Coronary Artery Anatomy

Ischaemic Heart Disease

• It results from imbalance between oxygen demand and supply

Aetiology

- Atherosclerosis (>90%)
- Embolisation
- Coronary spasm
- Vasculitis
- Ostial stenosis
- Severe LVH
- Congenital anomalies of the coronary artereis (e.g anomalous origin of LAD artery from pulmonary artery)

Pathogenesis of ACS

ATHEROSCLEROSIS

ATHEROSCLEROSIS

Risk Factors

Uncontrollable

SexHereditaryRaceAge

Controllable

- •High blood pressure
- High blood cholesterol
- Smoking
- Physical activity
- Obesity
- Diabetes
- Stress and anger

Investigations

- ECG
- Cardiac enzymes
- Chest x-ray
- FBS
- Serum lipids
- TMT
- Stress or pharmacologic stress myocardial perfusion studies
- Cardiac CT-Scan
- Coronary angiography

Treatment of CAD

- Nitrates
- Beta blockers
- Aspirin/PLAVIX DUAL ANTIPLATELT THERAPY
- Ca-channel blockers(in coronary spasm)
- Treating the associated risk factors
- Treating the precipitating factor
- Revascularization (if indicated) SURGICAL VS INTERVENTIONAL

Indications for Coronary Artery Bypass Grafting: (CABG)

- Triple vessel disease
- Lf main coronary artery disease (Distal)
- Hi risk PCI or not Suitable for PCI
- Complications of PTCA
- Life threatening complications of MI
- Anomalies of Coronary arteries.

Adult Cardiac Surgery: CABG Techniques

- Median sternotomy
- Cardiopulmonary bypass
- Cardioplegic arrest
- Conduits: Mammary artery, reversed saphenous vein, radial artery.

Sternotomy

- Sternotomy approach
 - allows almost all cardiac procedures
 - best overall access to the heart
- The sternum is divided with a saw

From : Manual of Cardiac Surgery, Harlan & Starr, Springer-Verlag, New York , 1995

Heart Lung Machine

Cardioplegia is administration

Conduites

- Arterial
 - LIMA
 - RIMA
 - RA
 - GEA
 - IEA

- Venous
 - GSV
 - SSV
 - Arm Veins

Coronary Artery Bypass Grafts Preoperative Condition Postoperative Condition cclusion of ght coronary tery sona Occlusion of left anterior descending aona Vein graft harvested from inner artery thigh Vein graft attached to right Internal mammary artery relocated and attached to LAD coronaty Vein artery Artery

Arterial vs Venous conduits

Total arterial revascularization

An incision is made on the right coronary artery

Willing

Arterial conduits in coronary artery bypass grafting: an inconvenient truth

Copyright, 1986, by the Massachusetts Medical Society

Volume 314	IANUARY 2.	1986

Number 1

INFLUENCE OF THE INTERNAL-MAMMARY-ARTERY GRAFT ON 10-YEAR SURVIVAL AND OTHER CARDIAC EVENTS

FLOYD D. LOOP, M.D., BRUCE W. LYTLE, M.D., DELOS M. COSGROVE, M.D., ROBERT W. STEWART, M.D., MARLENE GOORMASTIC, M.P.H., GEORGE W. WILLIAMS, PH.D., LEONARD A.R. GOLDING, M.D., CARL C. GILL, M.D., PAUL C. TAYLOR, M.D., WILLIAM C. SHELDON, M.D., AND WILLIAM L. PROUDFIT, M.D.

Abstract We compared patients who received an internal-mammary-artery graft to the anterior descending coronary artery alone or combined with one or more saphenous-vein grafts (n = 2306) with patients who had only saphenous-vein bypass grafts (n = 3625). The 10-year actuarial survival rate among the group receiving the internal-mammary-artery graft, as compared with the group who received the vein grafts (exclusive of hospital deaths), was 93.4 percent versus 88.0 percent (P = 0.05) for those with one-vessel disease; 90.0 percent versus 79.5 percent (P<0.0001) for those with two-vessel disease; and 82.6 percent versus 71.0 percent (P<0.0001) for those with three-vessel disease. After an adjustment for demographic and clinical differences by Cox multivariate analysis, we found that patients who had only vein grafts had a 1.61 times greater risk of death throughout the 10 years, as compared with those who received an internal-mammaryartery graft. In addition, patients who received only vein grafts had 1.41 times the risk of late myocardial infarction (P<0.0001), 1.25 times the risk of hospitalization for cardiac events (P<0.0001), 2.00 times the risk of cardiac reoperation (P<0.0001), and 1.27 times the risk of all late cardiac events (P<0.0001), as compared with patients who received internal-mammary-artery grafts. Internal-mammary-artery grafting for lesions of the anterior descending coronary artery is preferable whenever indicated and technically feasible. (N Engl J Med 1986; 314:1-6.)

Loop FD et al NEJM 1986

TWO INTERNAL THORACIC ARTERY GRAFTS ARE BETTER THAN ONE

Bruce W. Lytle, MD Eugene H. Blackstone MD Floyd D. Loop, MD Penny L. Houghtaling, MS John H. Arnold, MD Rami Akhrass, MD Patrick M. McCarthy, MD Delos M. Cosgrove, MD Objective: Does the use of bilateral internal thoracic artery (ITA) grafts provide incremental benefit relative to the use of a single ITA graft? Methods: We conducted a retrospective, nonrandomized, long-t (mean follow-up interval of 10 postoperative years) study of patients undergoing elective primary isolated coronary bypass surgery received either single (8123 patients) or bilateral ITA grafts (2 patients), with or without additional vein grafts. Multiple statist methods including propensity score matching, and multivariable pa monious and nonparsimonious risk factor analyses were used to add the issues of patient selection and heterogeneity. Results: In-hospital n tality was 0.7% for both the bilateral and single ITA groups. Surv for the bilateral ITA group was 94%, 84%, and 67%, and for the size ITA group 92%, 79%, and 64% at 5, 10, and 15 postoperative ye respectively ($P \le .001$). Death, reoperation, and percutaneous tran minal coronary angioplasty were more frequent for patients undergo single rather than bilateral ITA grafting, and this observation remai true despite multiple adjustments for patient selection, sampling, length of follow-up. The differences between the bilateral and single groups were greatest in regard to reoperation. The extent of benefi bilateral ITA grafting varied according to patient-related variables. no patient subsets were identified for whom single ITA grafting could

Arterial conduits used for coronary artery bypass grafting

- Internal Thoracic Artery
- Radial Artery
- Right Gastroepiploic Artery
- Inferior Epigastric Artery
- Others

A meta-analysis comparing bilateral internal mammary artery with left internal mammary artery for coronary artery bypass grafting

Aaron J. Weiss^{1,2}, Shan Zhao³, David H. Tian², David P. Taggart⁴, Tristan D. Yan^{2,5}

¹Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York City, New York, USA; ²The Collaborative Research (CORE) Group, Sydney, Australia; ³Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York City, New York, USA; ⁴Department of Cardiac Surgery, John Radeliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK; ⁵Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia

Corresponding to: Aaron J. Weiss, M.D. Department of Cardiothoracic Surgery, Mount Sinai Medical Center, 1190 Fifth Avenue Box 1029, New York, NY 10029, USA. Email: aaron.weiss@mountsinai.org.

			BIMA	LIMA		Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Naunheim	-0.288	0.265	100	100	1.7%	0.75 [0.45, 1.26]	1992	
Dewar	0.01	0.272	377	765	1.6%	1.01 [0.59, 1.72]	1995	
Pick	-0.198	0.247	160	161	1.9%	0.82 [0.51, 1.33]	1997	
Buxton	-0.342	0.127	1269	1557	4.9%	0.71 [0.55, 0.91]	1998	
Jones	-0.288	0.181	172	338	3.1%	0.75 [0.53, 1.07]	2000	
Tarelli	0.02	0.349	150	150	1.0%	1.02 [0.51, 2.02]	2001	
Berreklouw	-0.274	0.301	249	233	1.4%	0.76 [0.42, 1.37]	2001	
Endo	-0.051	0.179	443	688	3.1%	0.95 [0.67, 1.35]	2001	
Danzer	-1.347	0.639	382	139	0.3%	0.26 [0.07, 0.91]	2001	←
Hirotani	-1.386	0.805	179	124	0.2%	0.25 [0.05, 1.21]	2003	←
Stevens	-0.431	0.106	1808	2498	5.8%	0.65 [0.53, 0.80]	2004	
Calafiore	0.642	0.367	570	570	1.0%	1.90 [0.93, 3.90]	2004	
Lytle	-0.301	0.071	1152	1152	7.9%	0.74 [0.64, 0.85]	2004	
Toumpoulis	-0.117	0.126	490	490	4.9%	0.89 [0.69, 1.14]	2006	-+
Bonacchi	-0.58	0.306	320	332	1.3%	0.56 [0.31, 1.02]	2006	
Mohammadi	-3.912	1.528	1388	9566	0.1%	0.02 [0.00, 0.40]	2008	←──
Carrier	-0.431	0.119	1235	5420	5.2%	0.65 [0.51, 0.82]	2009	
Kurlansky	-0.186	0.047	2215	2369	9.3%	0.83 [0.76, 0.91]	2010	-
Kieser	-0.117	0.103	1038	4029	6.0%	0.89 [0.73, 1.09]	2011	-+
Locker	-0.315	0.107	1153	1153	5.8%	0.73 [0.59, 0.90]	2012	
Puskas	-0.431	0.155	812	2715	3.8%	0.65 [0.48, 0.88]	2012	
Kinoshita	-0.58	0.291	217	217	1.4%	0.56 [0.32, 0.99]	2012	
Kelly	-0.198	0.096	1079	6554	6.4%	0.82 [0.68, 0.99]	2012	
Joo	-0.01	0.169	366	366	3.4%	0.99 [0.71, 1.38]	2012	
Grau	-0.4	0.115	928	928	5.4%	0.67 [0.54, 0.84]	2012	
Glineur	-0.301	0.127	297	291	4.9%	0.74 [0.58, 0.95]	2012	
Parsa	-0.051	0.065	728	16881	8.2%	0.95 [0.84, 1.08]	2013	-
Total (95% CI)			19277	59786	100.0%	0.78 [0.72, 0.84]		•
Heterogeneity: Tau ² = 0.01; Chi ² = 47.10, df = 26 (P = 0.007); I ² = 45%								
Test for overall effect: 2	Z = 6.61 (P < 0.00001	1)						Favours [BIMA] Favours [LIMA]

Ann Cardiothorac Surg 2013

Effects of bilateral internal mammary artery grafting on long-term survival.

Study ID		Hazard ratio (95 % Cl)	Weight (%
Unmatched			
Naunheim		— 0.75 (0.45,1.26)	1.2
Pick		0.82 (0.50,1.33)	1.3
Rankin		0.84 (0.70,1.00)	9.9
Bereklouw		0.65 (0.41,1.04)	1.5
Subtotal (I-squared 0 %, p=0.776)	-	0.81 (0.69,0.94)	
Quintile			
Glineur		0.74 (0.58,0.95)	5.2
Stevens		0.74 (0.60,0.90)	7.7
Kurlansky		0.83 (0.77,0.91)	45.3
Subtotal (I-squared 0 %, p=0.448)	-	0.81 (0.75,0.87)	
Exact	2007		
Lytle		0.78 (0.69,0.88)	21.4
Grau		0.67 (0.54,0.84)	6.5
Subtotal (I-squared 24 %, p=0.251)	-	0.75 (0.65,0.85)	
Overall (I-squared 0 %, p=0.731)	•	0.79 (0.75,0.84)	
Weights are from random effects analysis.			
	0.50 0.75 1.00	1.50	
	Favours BIMA Favo	ours SIMA	

Gijong Yi et al. Circulation. 2014;130:539-545

Copyright © American Heart Association, Inc. All rights reserved.

Comparison of radial artery versus saphenous vein for clinical outcomes

Zhang H. Herz 2013

Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery Insights From PREVENT IV

Connie N. Hess, MD, MHS; Renato D. Lopes, MD, PhD; C. Michael Gibson, MD; Rebecca Hager, MR; Daniel M. Wojdyla, MSc; Brian R. Englum, MD; Michael J. Mack, MD; Robert M. Califf, MD; Nicholas T. Kouchoukos, MD; Eric D. Peterson, MD, MPH; John H. Alexander, MD, MHS

- Background—Coronary artery bypass grafting success is limited by vein graft failure (VGF). Understanding the factors associated with VGF may improve patient outcomes.
- *Methods and Results*—We examined 1828 participants in the Project of Ex Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) trial undergoing protocol-mandated follow-up angiography 12 to 18 months post–coronary artery bypass grafting or earlier clinically driven angiography. Outcomes included patient- and graft-level angiographic VGF (\geq 75% stenosis or occlusion). Variables were selected by using Fast False Selection Rate methodology. We examined relationships between variables and VGF in patient- and graft-level models by using logistic regression without and with generalized estimating equations. At 12 to 18 months post–coronary artery bypass grafting, 782 of 1828 (42.8%) patients had VGF, and 1096 of 4343 (25.2%) vein grafts had failed. Demographic and clinical characteristics were similar between patients with and without VGF, although VGF patients had longer surgical times, worse target artery quality, longer graft length, and they more frequently underwent endoscopic vein harvesting. After multivariable adjustment, longer surgical duration (odds ratio per 10-minute increase, 1.05; 95% confidence interval, 1.03–1.07), endoscopic vein harvesting (odds ratio, 1.41; 95% confidence interval, 1.16–1.71), poor target artery quality (odds ratio, 1.43; 95% confidence interval, 1.07–1.69) were associated with patient-level VGF. The predicted likelihood of VGF in the graft-level model ranged from 12.1% to 63.6%.
- *Conclusions*—VGF is common and associated with patient and surgical factors. These findings may help identify patients with risk factors for VGF and inform the development of interventions to reduce VGF.

Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT00042081.

(Circulation. 2014;130:1445-1451.)

	With VGF	Without VGF	
Characteristic	(n=782)	(n=1046)	P Value
Angiographic classification			
Per protocol angiography only	655 (83.8)	1002 (95.8)	
Early angiography only	64 (8.2)	0 (0.0)	
Early and per protocol angiographies	63 (8.1)	44 (4.2)	
Maximum stenosis of any target vessel ≥75%	790 (72.3)	2317 (71.5)	0.61
Endoscopic vein harvest technique	468 (60.1)	531 (50.9)	<0.001
Any use of composite graft	286 (36.6)	344 (32.9)	0.10
Longest graft length, median (IQR), cm	17.0 (14.3–19.3)	16.0 (14.0–19.0)	0.02
Any proximal (nonsuture)	21 (2.7)	19 (1.8)	0.21
Any distal (nonsuture)	23 (2.9)	27 (2.6)	0.65
Graft source*			0.32
Arm vein	0 (0.0)	2 (0.2)	
Lesser saphenous	12 (1.5)	22 (2.1)	
Greater saphenous	770 (98.5)	1022 (97.7)	
Worst target artery quality			<0.01
Good	308 (39.4)	484 (46.3)	
Fair	281 (36.0)	363 (34.7)	
Poor	192 (24.6)	198 (18.9)	

Comparative patencies of different in situ and free arterial conduits at 5 years.

The real world

Prevalence and Variability of Internal Mammary Artery Graft Use in Contemporary Multivessel Coronary Artery Bypass Graft Surgery

Analysis of the Society of Thoracic Surgeons National Cardiac Database

SCIENTIFIC LETTER

Why do UK cardiac surgeons not perform their first choice operation for coronary artery bypass graft?

P A Catarino, E Black, D P Taggart

Heart 2002;88:643-644

For the past 15 years the "standard" coronary artery bypass graft (CABG) operation for multi-vessel coronary artery disease has used the left internal mammary artery and supplemental saphenous vetin segments for conduits.¹ However, increasing evidence suggests that arterial conduits have superior patency rates to vetin grafts' leading to improved survival and reduced need for reintervention.¹⁴

It is therefore surprising that the uptake of multiple arterial grafts for CABG remains poor. Of 23 000 first time isolated multi-vessel CABG procedures reported in the 1999-2000 database of the Society of Cardiothoracic Surgeons of the United Kingdom and Ireland (SCTS), around 3600 (little over 15%) used more than one arterial graft.

We conducted a postal survey of UK consultant cardiac surgeons to identify what factors contributed to the relatively low proportion of patients receiving multiple arterial grafts.

METHODS

Consultant cardiac surgeons with a predominantly adult practice were identified from the registry of the SCTS. An anonymous postal survey of 142 consultants was carried out in two mailings. A series of questions with fixed possible responses were asked in a brief format. The specific questions and response options are detailed in questions 1–4 and the corresponding figures below.

Question 1 Is there any evidence to show an advantage of using multiple arterial grafts: none; circumstantial; definite.

Question 2 What percentage of your patients might benefit from multiple arterial grafts: < 25%; 25–50%; > 50%.

RESULTS

Ninety replies were received (63%). The number of responses to each option is illustrated in the figs. In question 3 some respondents indicated more than one choice and these were all included.

DISCUSSION

Around 85% of first time isolated multi-vessel CABG procedures performed in the UK today do not utilise more than one arterial graft. The relatively low proportion of multiple arterial grafts implies that surgeons do not feel there is a good case for their use in all but a small proportion of patients.

The results of this survey, however, reveal that most surgeons actually believe that there is at least circumstantial evidence of benefit with multiple arterial grafts, with over one third citing definite evidence. This is substantiated by the first part of question 4 where only a minority of surgeons (22%) cite lack of benefit as a reason for not performing multiple

Guestion 3 If you required elective CABG tomorrow and had typical three vessel disease and reasonable left ventricular function you would wish to have: whatever the surgeon decides, 1 internal mammary artery [IMA] + 2 veins; 2 IMA + 1 vein; 3 arterial grafts.

Guestion 4 Multiple arterial grafts are not commonly performed in the UK because: there is no proof of benefit; the mortality may be higher; the morbidity may be higher; the procedure may take too long; there may be a learning curve.

RAPCO Trial: Assessment, enrolment and randomization - group 1

Hayward et al. The Radial Artery Patency and Clinical Outcomes (RAPCO) Trial: Design, Intermediate Term Results and Future Direction Heart, Lung and Circulation 2011

Kaplan-Meier estimates of survival by intention to treat of RA vs. RITA patients, Group 1

Hayward PA and BuxtonBF Ann Cardiothorac Surg 2013;2(4):458-466

PTCA

Off-Pump Coronary Artery Bypass (OPCAB)

Procedure

□ Median sternotomy of varying sizes.

Depending on the physiology of the patient, the smallest incision will be made.

□ Arteries or veins can be harvested from the patients chest wall, arm, and or leg.

□ Betablockers are used to slow the heart rate.

Deep pericardial sutures and the use of specialized instruments to prop the heart in a position that will allow the surgeon to access occluded arteries.

Apical vacuum positioning device lifts heart to access posterior vessels

Instrumentation

□ Octopus Device

- Has multiple small suction cups that are applied to the heart surface.
- When suction is turned on, the cups stick to the surface, and hold the heart steady, with movement being less than 1 mm.

□ Star fish Device

When suction is turned on, the cups stick to the surface, and hold the heart steady

Source: Lawrence H. Cohn, David H. Adams: Cardiac Surgery in the Adult, Fifth Edition Copyright © McGraw-Hill Education. All rights reserved.

Figure 2. Positioning device (Starfish) and tissue stabilizer device on the epicardial surface

Thank You for Your Attention