Hemoglobin type	Composition	Notes
НЬН	-Tetramer of Beta, β4 .	-Alpha thalassemia intermedia -3 α genes deleted -mild-moderate symptoms -not fatal
Hb Barts	-Tetramer of Gamma, γ4.	-Alpha thalassemia major -hydrops fetalis -4 α genes deleted -fatal -stillbirth/early after-birth morbidity
HbE	-Defective beta globin which combines with alpha (α2, βΕ).	-Individuals with this point mutation make only 60% of the normal amount of β globin -common in southeast Asia -asymptomatic
HbS	-Point mutation in beta chain. -Sickled hemoglobin, via the valine, forms a hydrophobic protrusion (can clog into the pocket that is there even in normal Hb only when deoxygenated) -Anything that increases T state will worsen the sickling.	-mutant Hb is poorly soluble when deoxygenated -causes hemolytic anemia, less than 20 days rbc life span -irreversible sickling with repeated cycles, blocks capillaries, causing damage to organs via hypoxia
HbC	 -point mutation in beta chain. -This hemoglobin is less soluble, so it crystallizes in RBCs, reducing their deformability. -Causes more water loss out of an RBC= higher Hb concentration. 	-Mostly a minor issue -minor hemolytic anemia due to water loss (RBCs are rigid) -less deformability= reducing their ability to squeeze through capillary.
HbSC	-HbC from a parent, HbS from the other	-causes mild hemolytic anemia!
HbCS (constant spring)	 -mutation in the termination of alpha2, causes longer mRNA (unstable) or unstable proteins. -Less quantity, less quality together 	-if heterozygotes ($\alpha \alpha, \alpha \alpha_{cs}$) causes alpha thalassemia trait. -if coinherited with thalassemia (, $\alpha \alpha_{cs}$), causes alpha thalassemia intermedia. -common in southeast Asia and China.
Hb Hammersmith	-point mutation (most commonly in beta) that leads to formation of unstable hemoglobin.	 -reduced hydrophobicity in heme pocket. -unstable heme-globin interactions. -causes cyanosis.

Hb Cowtown Hb Kansas Hb Yakima	-substitution of His146 that's responsible for the Bohr effect -stabilization of the T state -stabilization of the R state	 -INCREASED oxygen affinity -more hemoglobin in R state -shifts the curve to the LEFT -DECREASED oxygen affinity -more hemoglobin in T state -shifts the curve to the RIGHT -INCREASED oxygen affinity -more hemoglobin in R state -shifts the curve to the LEFT
HbM – methemoglobin (in normal people it's available but only in very small amounts) (kept low via methemoglobin reductase enzyme). normal hemoglobin but with ferric iron.	 -normally, oxyhemoglobin carries oxygen while in ferrous state, and during the release it's oxidized to ferric state, then reduced by methemoglobin reductase back to ferrous state. -methemoglobinemia causes: some mutant globins resist the reductase. or deficiency of this reductase. or drugs / drinking water with nitrates. 	-normal enzyme uses NADH from glycolysis -TREATED BY methylene blue, it will get reduced to leukomethylene blue which will accept the electrons instead of the deficient enzyme. -uses NADPH from PPP -chocolate brown blood + lips
HbM Boston	- Distal histidine mutated to tyrosine; this tyrosine's oxygen causes oxidation of ferrous iron – Auto oxidation of iron.	-results in methemoglobinemia
HbM Iwate	- Proximal histidine mutated to tyrosine; this tyrosine's oxygen causes oxidation of ferrous iron – Auto oxidation of iron.	-results in methemoglobinemia

Ahmad AlHurani