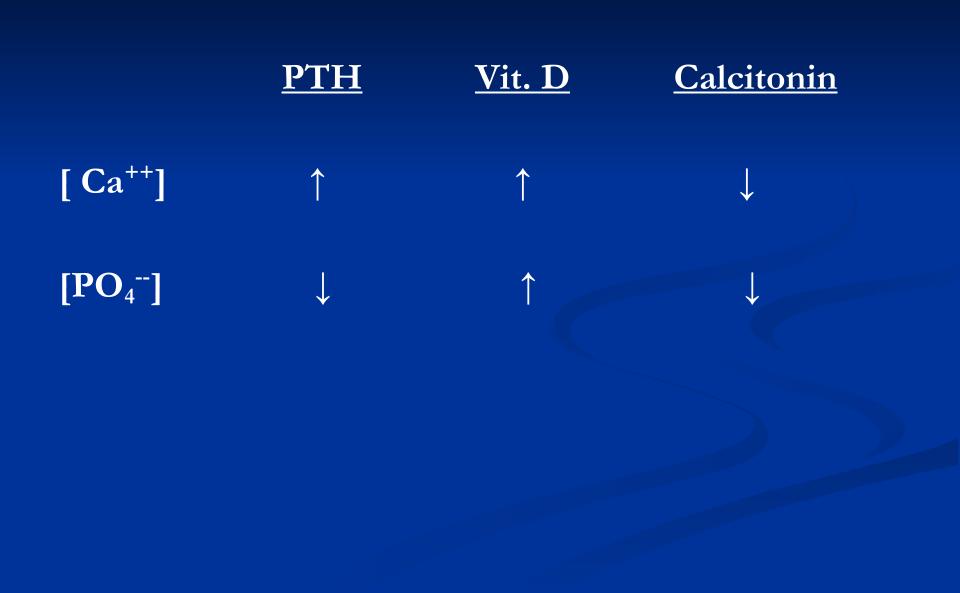

Parathyroid Gland & Calcium Metabolism

3 factors PTH, Vitamin D, Calcitonin 3 tissues Bone, Intestine, Kidneys **Parathyroid Hormone (PTH)** 84 a.a peptide translated as a pre-prohormone Regulation of synthesis & release: $\downarrow [Ca^{++}] \rightarrow \uparrow PTH; \uparrow [Ca^{++}] \rightarrow \downarrow PTH$ Little if any regulation by PO_4 ⁻⁻ Maximum secretion of PTH occurs at plasma Ca⁺⁺ below 3.5 mg/dl
At Ca⁺⁺ above 5.5 mg/dl, PTH secretion is maximally inhibited

On bone (1° target tissue): **PTH** \uparrow resorption of Ca⁺⁺& PO₄⁻⁻ (cAMP) mediated effect On intestine: \uparrow absorption of Ca⁺⁺& PO₄⁻⁻ An indirect effect through \ vitamin D synthesis On kidneys: \uparrow reabsorption of Ca⁺⁺, $\uparrow\uparrow\uparrow$ excretion of PO₄⁻⁻ (cAMP mediated effect)


Vitamin D (Normal daily requirement 400 IU/ day)

- On intestine (1° target tissue):
- \uparrow absorption of Ca⁺⁺& PO₄⁻⁻
- On bone:
- ↑ bone resorption
- On kidney:
- \uparrow reabsorption of Ca⁺⁺& PO₄⁻⁻

Calcitonin (32 a.a peptide)

- Synthesized and released from parafollicular cells of the thyroid
- Regulation of synthesis & release:
- ↑ [Ca⁺⁺] → ↑ calcitonin; ↓ [Ca⁺⁺] → ↓ calcitonin
 Effects:
- On bone: \downarrow bone resorption (\downarrow Ca⁺⁺&PO₄⁻⁻movement) On kidneys: \uparrow Ca⁺⁺& PO₄⁻⁻ excretion ? On intestine: \downarrow Ca⁺⁺& PO₄⁻⁻ absorption

- May be more important in regulating bone remodeling than in Ca⁺⁺ homeostasis:
 Evidence: Chronic excess of calcitonin does not produce hypocalcemia and removal of parafollicular cells does not cause hypercalcemia
- PTH and Vitamin D₃ regulation dominate

Disorders affecting the parathyroids: Hyposecretion (hypoparathyroidism):

- Causes:
- Thyroidectomy (most common cause)
- Idiopathic
- \[] sensitivity of target tissues to PTH (pseudohypoparathyroidism)

Symptoms of hypoparathyroidism: Are those of hypocalcemia: Parasthesia, tingling lips, fingers, and toes, carpopedal spasm, muscle cramps, tetanic contractions, convulsions (seizures) Bronchospasm Depression, anxiety, abdominal pain Cataract...

Lab. Tests (hypoparathyroidism):

- \downarrow blood [Ca⁺⁺]
- \uparrow blood [PO₄⁻⁻]
- ↓ urinary [cAMP]
- ↓ urinary [PTH]
- \downarrow urinary [Ca⁺⁺]
- \downarrow urinary [PO₄⁻⁻]

R_x of hypoparathyroidism:

- Vitamin D

Calcifediol, Calcitriol, Ergocalciferol, &-Calcidol,

Dihydrotachysterol...

Drug of choice for chronic cases

- Ca⁺⁺ supplement
- Ca⁺⁺ rich diet

Ca⁺⁺ salts (carbonate, gluconate, chloride...)

Drug of choice in acute cases

- Thiazide diuretics could help, they inhibit excretion of Ca⁺⁺

- Teriparatide (synthetic rPTH)-recently approved in the management of osteoporosis; given SC

Hypersecretion (hyperparathyroidism):Causes:

- 1° hyperparathyroidism (adenomas)
- 2° hyperparathyroidism
- 2° to any cause of hypocalcemia
 - e.g. malabsorption syndrome, renal disease...
- 3° hyperparathyroidism
- Results from hyperplasia of the parathyroid glands and a loss of response to serum calcium levels; this disorder is most often seen in patients with chronic renal failure

Symptoms of hyperparathyroidism: Are those of hypercalcemia: Generalized weakness and fatigue depression, bone pain, muscle pain (myalgias), decreased appetite, feelings of nausea and vomiting, constipation, polyuria, polydipsia, cognitive impairment, kidney stones and osteoporosis...

Lab. Tests (hyperparathyroidism):

- ↑ blood [Ca⁺⁺]
- \downarrow blood [PO₄⁻⁻]
- ↑ urinary [cAMP]
- ↑ urinary [PTH]
- ↑ urinary [Ca⁺⁺]
- \uparrow urinary [PO₄⁻⁻]

Bone x-ray \rightarrow bone decalcification

R_x of hyperparathyroidism:

- Low Ca⁺⁺ diet
- Na⁺ phosphate
- Steroids e.g. Prednisolone... \downarrow Ca⁺⁺ absorption
- Calcitonin
- Surgery (best Rx)
- Cinacalcet (calcimimetic) (oral tab) is used to treat secondary hyperparathyroidism in patients with end-stage renal disease who are on dialysis & also used to treat patients with 1° hyperparatyroidism & cancer of parathyroid gland

Other drugs effective in the management of hypercalcemia:

- Diuretics
- e.g. Furosemide (↑ Ca⁺⁺ excretion)
- Plicamycin; inhibits bone resorption
- Biophosphonates
- Etidronate, Pamidronate...
- \uparrow bone formation and \downarrow bone resorption

Paget's disease

Rare bone disorder characterized by deminaralization of bone, disorganized bone formation, ↑ bone resorption, fractures, spinal cord injuries, deafness...

- $\blacksquare \mathbf{R}_{\mathbf{x}}:$
- Salmon calcitonin (drug of choice) whether extracted from salmon fish or synthetic, S.C, I.M. Also effective in the management of osteoporosis in postmenopausal women
- Biophosphanates, orally

Etidronate, alendronate, residronate, pamidronate...