Oral hypoglycemic agents

****** <u>Biguanides:</u>Metformin, BuforminPossible MOA:

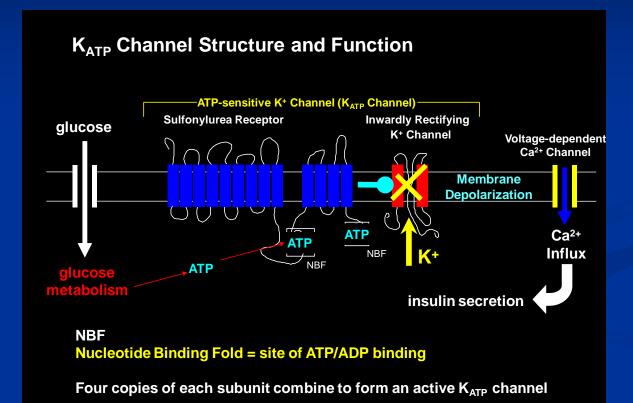
- ↓ CHO absorption
- + hepatic gluconeogenesis;
 † glycolysis
- \downarrow glucagon release
- ↑ peripheral utilization of glucose
- ↑ response to insulin

Metformin is only effective in type II DM (effects require insulin)

- ?? Other uses: Obesity (\ fat deposition) and polycystic ovarian syndrome (\ androgen production by ovaries and adrenals)
- Side effects:
- N & V, metallic taste
- Abdominal pain and diarrhea
- Hypoglycemia (rare)
- Lactic acidosis
- \downarrow vitamin B_{12} absorption

****** Sulfonylureas Classification * First generation Tolbutamide Chlorpropamide Tolazamide Acetohexamide

t _{1/2}	<u>DOA</u>	Metabolic fate		
7	6-12	-		
34	24-72	+		
7 <	12-16	+		
5	12-18	+		


* Second generation	t _{1/2}	<u>DOA</u>	<u>Metabolic fate</u>
Glyburide (Glibenclamide)	4	20-24	±
Glipizide	3	14-16	—
Gliclazide	8	10-15	_/
Glimeperide	5	18-22	±

Sulfonylureas:

- † insulin release (major MOA) (Receptor-mediated effect)
- \uparrow no. of β -cells, \uparrow no. of insulin receptors
- ↑ peripheral cells sensitivity to insulin effect
- ↑ insulin binding to its receptors
- ↑ insulin affinity to its receptors
- + hepatic gluconeogenesis
- \downarrow glucagon release, \uparrow somatostatin release...

Mechanism of action of sulfonylureas:

- High affinity sulfonylurea receptors found on beta cells linked to ATP-ase sensitive K⁺ ion channel
- Following binding, voltage dependent Ca⁺⁺ channels open in response to depolarization and allow influx of Ca⁺⁺
- Ca ⁺⁺ binds to calmodulin which activates kinases that cause exocytosis of insulin containing secretory granules
- Beta cells sense glucose more efficiently, producing more insulin

Sulfonylureas differ in potency, bioavailability, DOA, tolerance, extent of protein binding and metabolic fate

- Drug-drug interactions (many):
 Propranolol, sulfa drugs, oral anticoagulants, aspirin...etc ↑ effects of sulfonylureas
- Clinical uses to sulfonylureas:
- DM

- Nocturnal enuresis (Glyburide $\rightarrow \uparrow$ ADH release)

Side effects to sulfonylureas:

- Hypoglycemia
- N & V, dizziness
- Allergy
- Agranulocytosis
- Hepatic dysfunction

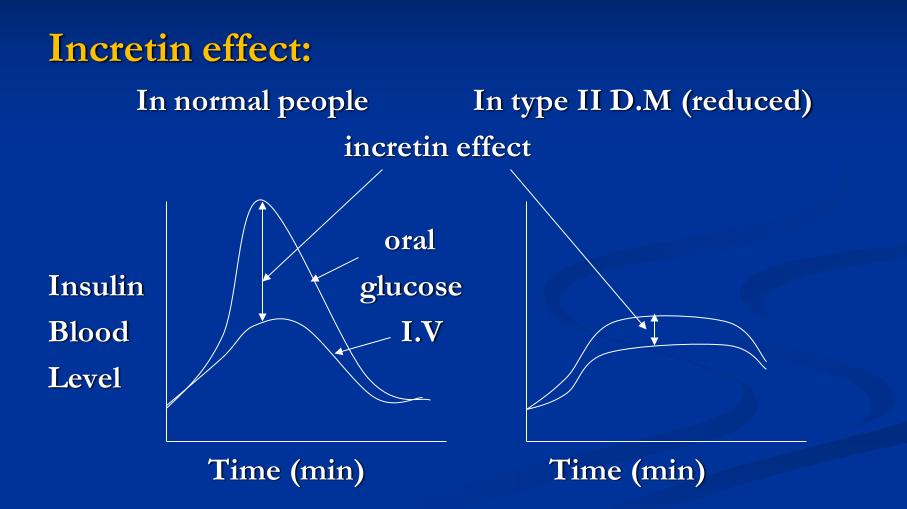
Other orally effective drugs in DM: - *α*-glucosidase inhibitors Acarbose; Miglitol (more potent) Effective in type II DM ↓ CHO absorption Inhibits *a*-glucosidase, an enzyme in the brush border of intestine responsible for breakdown of CHO, and hence \uparrow glucose absorption Such inhibitors \downarrow fasting and postprandial hyperglycemia

 α -glucosidase inhibitors also \downarrow insulin secretion following administration sparing β -cells Its been found that these inhibitors reduce incidence or risk of atherosclerosis in diabetics Taken before or with meals Could be given with insulin and sulfonylureas Side effects: Abdominal pain and diarrhea

- Prandial glucose regulators:
- Repaglinide; Nateglinide (has faster OOA), Mitiglinide...
- † insulin release (have similar MOA to sulfonylureas)
 Hypoglycemia is infrequent
 Taken before meals (every meal)
 Could be taken with metformin or insulin
 Hypoglycemia is infrequent

- Thiazolidinediones (TZD's):

Pioglitazone (has shorter $t_{1/2}$), Troglitazone... Mainly used in NIDDM who have insulin resistance MOA:


Peroxisome Proliferator-Activated Receptors=PPAR (γ isoform) agonist

PPAR's are members of the superfamily of ligandactivated transcription factors located in adipose tissue, skeletal muscle and large intestine

TZD's

- ↑ sensitivity of peripheral tissues to insulin effect
- ↓ glucose exit or output from the liver
 ↓ insulin resistance

Good to patients with \uparrow insulin levels which are believed to be responsible for \uparrow B.P, \uparrow lipids and atherosclerosis in patients with insulin resistance

- Incretin hormones

- 2 polypeptides \uparrow glucose absorption by gut
- 1. Glucagon-like peptide-1 (GLP-1)
- Produced by the L cells in ileum and colon
- It \uparrow insulin release and \downarrow glucagon release following meals
- + \downarrow gastric emptying & leads to induction of satiety

2. Glucose-dependent insulinotropic polypeptide (GIP)

- Produced by the K cells in the proximal gut (duodenum & proximal jejunum)
- It stimulates glucose-dependent insulin release from β-cells
- Both GLP & GIP are metabolized by the enzyme dipeptidyl peptidase-4 (DPP-4) which is present in gut, liver, kidneys, lymphocytes and endothelial cells

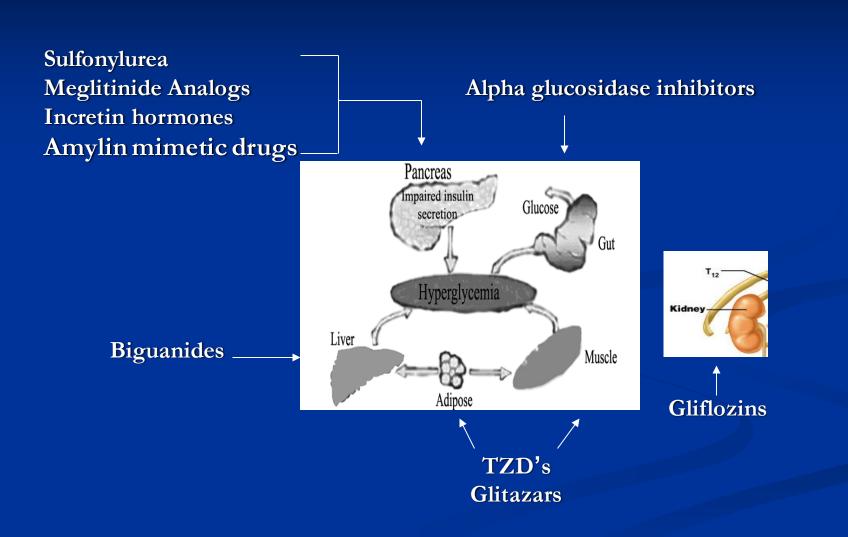
Sitagliptin, Gemigliptin, Linagliptin... **Orally effective selective DPP-4** inhibitors ↑ blood levels of GLP-1, GIP insulin and Cpeptide and \downarrow glucagon blood levels An oral dose daily reduces high blood glucose and HbA1c levels Could be taken with metformin or sulfonylureas Hypoglycemia is infrequent

Exenatide, Liraglutide... Synthetic analogs to GLP-1 ↑ insulin and ↓ glucagon blood levels Considered as an adjunct therapy to metformin or sulfonylureas in patients with type 2 D.M who still have suboptimal glycemic control Given S.C 60 min before meal Hypoglycemia is infrequent

- Aldose reductase (AR) inhibitors Epalrestat; Ranirestat; Fidarestat AR Fructose Glucose – Sorbitol Sorbitol has been implicated in the pathogenesis of retinopathy, neuropathy and nephropathy AR inhibitors proved to improve diabetic polyneuropathy **Orally effective**

Amylin mimetic drugs Pramlintide

- Amylin is released from pancreatic beta cells along with insulin in response to meals
- Deficient amylin secretion is a well-recognized phenomenon in type I diabetes and in a later-stage in type II, in whom pancreatic insulin production is markedly reduced
- Amylin physiological effects mimic in part those of GLP-1 decreasing glucagon secretion from pancreatic alpha cells, thereby attenuating hepatic glucose production
- It also delays gastric emptying and likely possesses a central effect to enhance satiety


Pramlintide is a synthetic hormone for parenteral (subcutaneous) administration, resembling human amylin effects

- It reduces the production of glucose by the liver by inhibiting the action of glucagon and diminishes postprandial glucose fluctuations
- Pramlintide was approved by FDA in 2005. While it seems to be a satisfactory adjuvant medication in insulin-dependent diabetes, it is unlikely to play a major future role in the management of type II DM

Inhibitors of subtype 2 sodium-glucose transport protein (SGLT2), in kidney

Canagliflozin; Dapagliflozin...

- SGLT2 is responsible for at least 90% of the glucose reabsorption in the kidney. Blocking this transporter causes blood glucose to be eliminated through the urine
- Effective along with metformin ± sulfonylyrea in the management of type II DM

- Somatostatin

In low doses $\rightarrow \downarrow$ glucagon release Under evaluation - Role of ACEI's; ARB's; Statins ****** Role of Glucagon in diabetics?!!! ****** Pancreatic transplantation and gene therapy ****** <u>Drugs | blood glucose levels:</u> β-blockers, salicylates, indomethacin, naproxin, alcohol, sulfonamides, clofibrate, anabolic steroids, lithium, Ca⁺⁺, ampicillin, bromocriptine...

****** <u>**Drugs** \uparrow **blood** glucose levels:</u> β-blockers, thiazides and loop diuretics Glucocorticoids Oral contraceptive drugs Ca⁺⁺ channel blockers Phenytoin, morphine, heparin Nicotine, clonidine, diazoxide H₂-receptor blockers

Goals of DM treatment!!=Control

- Ensure good Pt.-clinic relationship
- Control symptoms
- Prevent acute metabolic crisis of KA & hypoglycemia
- Maintain normal growth & BW
- Encourage self-reliance & self-care
- Eliminate risk factors
- Smoking, \uparrow BP, \uparrow lipids...

Cont. goals:

- Prevent psychological complications
- Accept restrictions on life
- Diet control
- Monitoring blood glucose & insulin adjustment
- Know manifestations of hypoglycemia & how avoiding them
- Early treatment of complications
- Photocoagulation, foot care advices...