

Resources for the lectures

- Harper's Illustrated Biochemistry
- Stryer's Biochemistry
- Campbell's Biochemistry

Hormones: The Remote Controllers

- What are hormones? Organic, blood, low amounts, source & target
- Functions:
 - They help maintain homeostasis
 - Mediate responses to external stimuli
 - Play roles in growth and development

Classes:

- Endocrine hormones
 - Distance; stability; & concentration
- Paracrine hormones
- Autocrine hormones

Signaling by Secreted Molecules

© Sinauer Associates, Inc.

Nervous vs./& Endocrine

Two systems act individually and together in regulating the human physiology

The Target Cell Concept

- The definition of a target has been expanded to include any cell in which the hormone (ligand) binds to its receptor, regardless of the action
- **200 types** of differentiated cells in humans
- Only a few produce hormones! (<50 known hormones)</p>
- All of **75 trillion cells** in a human are targets to one or more
- One hormone → several cell types
- One cell type → several hormones
- One hormone → several effects

The Target Cell Concept

• Several factors determine the response of a target cell to a hormone:

Factors affect the concentration of the hormone at the target cell

- ✓ The rate of synthesis and secretion of the hormone
- ✓ The proximity of the target cell to the hormone source (dilution)
- \checkmark The K_d of the hormone receptor complex
- ✓ The rate of conversion of inactive form to the fully active form
- ✓ The rate of clearance from the plasma

The Target Cell Concept

Several factors determine the response of a target cell to a hormone:

Factors affecting the target cell response

- ✓ The number, relative activity, and state of occupancy of receptors
- ✓ The metabolism (activation / inactivation) of the hormone in the target cell
- ✓ The presence of factors within target cell necessary for the response
- ✓ Up- or down-regulation of the receptors upon interaction with ligand

✓ Post-receptor desensitization of the cell

Receptors Discriminate Precisely

• Major challenge:

Atto- to nano-molar range (10⁻¹⁵ to 10⁻⁹ mol/L) vs.
Structurally similar molecules (sterols, amino acids, peptides, and proteins): micro- to milli-molar (10⁻⁶ to 10⁻³ mol/L) range

Accordingly; Hormone-Receptor Interactions

- Should be specific: displaceable by agonist or antagonist
- Should be saturable
- Should occur within the concentration range provided

- Dissociation constant K_d
- $K_d = \{[H] X [R]\} / [H-R]$

Total hormone added [H]

- 20 X dissociation constant is enough to saturate the receptor
- K_d values for many hormone range from 10⁻⁹ to 10⁻¹¹ M

Receptor domains

- All receptors have at least two functional domains:
 - Recognition domain
 - Coupling or signal transduction domain
- Coupling occurs in two general ways:

- Changing the activity of an enzyme (Polypeptide & catecholamines, plasma membrane)
- Direct (steroids, retinoids, and thyroid hormones, intracellular)
- Steroid, thyroid, and retinoid hormone receptors:
 - Hormone binding site ; DNA binding site; co-regulator proteins binding site, cellular trafficking proteins binding site
- Receptor–effector coupling provides the first step in amplification

How the release is controlled?

Classification of Hormones Chemical Structure

- Chemical composition; solubility; location of receptors; nature of the signal used to mediate hormonal action
- Polypeptides: Pituitary hormones; Hypothalamic releasing hormones; Insulin, Growth factors...
- Amino acid derivatives: Adrenalin, Thyroid hormones
- Steroids

Classification of Hormones Mechanism of Action

- Hormones that bind to intracellular receptors
 - Steroids
 - Thyroid hormones
 - Calcitriol, retinoic acid

Classification of Hormones Mechanism of Action

- Hormones that bind to cell surface receptors
- (According to second messenger):
 - cAMP (β adrenergic factor, glucagon, ACTH)
 - cGMP (atrial natriuretic factor, Nitric oxide)
 - Calcium or phosphatidyl inositol (oxytocin, TRH)
 - Kinase or phosphatase cascade (insulin, GH)

General Features of Hormone Classes

	Group I	Group II
Types	Steroids, iodothyronines, calcitriol, retinoids	Polypeptides, proteins, glycoproteins, catecholamines
Action	Slow	Fast
Solubility	Lipophilic	Hydrophilic
Transport proteins	Yes	No Cytoplasmic responses
Plasma t _{1/2}	Long (hrs - days)	Short (minutes)
Receptor	Intracellular	Plasma membrane
Mediator	Receptor- hormone complex	cAMP, cGMP, Ca ²⁺ , kinase cascades, metabolites of phosphoinositols

Hormones Classes Steroid hormones

A. Sex hormones - are divided into 3 groups

- **1**. Male sex hormones or Androgens
- 2. Female sex hormones or Estrogens
- 3. Pregnancy hormones or Progestines
- **B.** Hormones of Adrenal Cortex
 - 1. Mineralocorticoids: aldosterone....
 - 2. Glucocorticoids: cortisol. ...
 - 3. Adrenal androgens: male sex hormones mainly dehydroepiandrosterone (DHEA) and testosterone

Hormones Classes Non steroid hormones

- A. Peptide and protein hormones
 - All hypothalamic, pituitary, digestive hormones
 - All pituitary hormones are made from single polypeptide chains EXCEPT: TSH; FSH; LH (homodimers) – glycoproteins (≈ 25 kDa)
- B. Amino acid derivatives
 - Amines derived from tyrosine or tryptophan: TH, dopamine, epinephrine, melatonin

Lipid – soluble hormones:

Amino Acid-Derived Hormones Tyrosine derivatives

Structure of Hormones

Peptide & Protein Hormones

Peptide & Protein Hormones

C. Peptides of various sizes

TRH

ACTH

Structure of Hormones

Peptide & Protein Hormones

Hormone	Structure
GHRH	44
TRH	3
GnRH	10
CRH	41
ADH	9
Vasopressin	9
Angiotensin I	10
Angiotensin II	8
Insulin	51
Glucagon	29

Synthesis of Peptide Hormones

- From precursor polypeptides
 - One gene may code more than one hormone (POMC)
 - The cleavage depends on specific enzymes

Synthesis of Peptide Hormones

- From precursor genes
 - Vasopressin and oxytocin
 - Synthesis in separate cell bodies of hypothalamic

neurons

Synthesis of Peptide Hormones

- Peptide & Protein Hormones
- From Pre-pro-hormones
- A larger precursor preproinsulin

С

Ċ00⁻

- 23 aa signal sequence
- 3 disulfide bonds
- Proinsulin
 - Remove the C peptide
- Mature insulin
 - A and B chains

ĊOO

Signal sequence

Ċ00⁻

-00C-

C peptide

- **1. Permissive effects** one hormone enhances the effect of a later hormone
 - Estrogen up-regulates progesterone receptors in uterus
 - Thyroid hormone increases the effect of epinephrine on breakdown of triglycerides in adipocytes
- 2. Integrative effects hormones produce complementary effects on different tissues
 - PTH and calcitriol increase ECF calcium

Target cells interactive effects

3. Synergistic effects:

- Both FSH and estrogen necessary for normal oocyte development
- FSH and testosterone together increase spermatogenesis

- **4.** Antagonistic effects:
 - Insulin and glucagon