Adrenal Steroids Mineralocorticoids & Glucocorticoids

Mineralocorticoids (Aldosterone)

Synthesis: From cholesterol

Control of synthesis and release

- [†] in the plasma concentration of Angiotensin III, a metabolite of angiotensin II
- ↑ plasma angiotensin II
- [†] K⁺ blood levels (potassium levels are the most sensitive stimulator of aldosterone)
- ACTH
- ↓ ECF or blood volume; metabolic acidosis

Hyd's= Hydroxylases

Renin-angiotensin-aldosterone axis Angiotensinogen Renin → Angiotensin I ACE ____ Angiotensin II Aldosterone

- Factors/drugs ↑ renin-angiotesin-aldosterone:
- Volume depletion (hemorrhage, low Na⁺ intake, dehydration, overuse of diuretics...)
- Upright posture
- K⁺
- ACTH
- Vasodilators
- Adrenoreceptor antagonists

Factors/drugs \ renin-angiotesin-aldosterone:

- Blood volume expansion
- Renin release inhibitors (also known as renin antagonists)
- Aliskiren, Remikerin, Enalkiren, β_1 -blockers
- ACE inhibitors
- Captopril, Enalapril, Benzopril, fosinopril, Lisinopril, Ramipril ...
- ARB's (Angiotensin II receptor blockers)
- Candesartan, Losartan, Irbesartan, telmesartan...
- Aldosterone antagonists
- Spironolactone, Eplerenone

- Aldosterone effects:
- **Receptor-mediated**

Acts on distal convoluted tubules in the kidney

- \uparrow reabsorption of $Na^+ \rightarrow$ hypertension
- \uparrow excretion of K⁺ & H⁺ \rightarrow hypokalemia & metabolic alkalosis
- \uparrow EC volume
- $-\uparrow BP$

Disorders affecting aldosterone release: * Hypoaldosteronism...rare * Hyperaldosteronism 10 2^{o} $\overrightarrow{\mathbf{N}} \mathbf{a}^{+} \mathbf{Volume} \overrightarrow{\mathbf{N}} \mathbf{a}^{+} \mathbf{Volume}$ _____ ↑Ald. ←____ ____↑Ald.***** ____ * Initial defect

Glucocorticoids (Cortisol)

Feedback control

Circadian rhythm Pt's on cortisol therapy... Cortisol synthesis (from cholesterol)

Steroid synthesis inhibitors:

- o,p'-DDD (Mitotane)
- Causes selective atrophy of Zona Fasciculata and Zona Reticularis
- Useful in R_x of adrenal Ca when radiotherapy or surgery are not feasible and in certain cases of breast cancer
- Aminoglutethimide

Selective desmolase inhibitor and non selective aromatase inhibitor, same uses as mitotane

- Trilostane

Competitive inhibitor of 3β-hydroxysteroid dehydrogenase enzyme effective in Cushing's syndrome and breast cancer

- Ketokonazole
- An antifungal agent

An inhibitor of different hydroxylases; inhibits steroidogenesis in adrenals and testes Effective in Cushing's syndrome and Ca of prostate

- Amphenone B

- An inhibitor of different hydroxylases but very toxic
 The therapeutic use of amphenone B is limited by its toxicity and by its antithyroid effect
 Causes severe CNS depression, GIT upset and many skin disorders
 Metyrapone (Metopirone)
- 11β-hydroxylase inhibitor
- Effective as a diagnostic tool (metyrapone test) and in the management of Cushing's syndrome

Release and transport of glucocorticoids Glucocorticoids receptors

- Pharmacological effects/side effects:
- On proteins
- ↑ Catabolism ↓ anabolism
- → Osteoporosis; steroid myopathy; delayed wound healing; delayed peptic ulcer healing...
- On CHO
- ↑ blood sugar level (↑ gluconeogenesis; ↓ peripheral utilization of glucose)

- On lipids ↑ lipolysis Fat redistribution - On electrolytes Aldosterone-like effect \downarrow Ca⁺⁺ absorption from intestine ↑ Ca⁺⁺ excretion by kidney ↑ uric acid excretion

Other possible mechanisms:

- Also inhibit neutrophil and macrophage function
- Inhibition of platelet activation factor (PAF)
- Inhibition of tumor necrosis factor or receptor (TNF; TNR)
- Inhibition of nitric oxide reductase...

- Immunosuppressant effect
- Major mechanisms
- \downarrow initial processing of Ag
- ↓ Ab formation
- ↓ effectiveness of T-lymphocytes
- ↓ lymphocyte induction & proliferation
- ↓ lymphoid tissue including leukemic lymphocytes
 (antileukemic effect)

- Antiallergic effect Suppress allergic response ↓ histamine release ↓ eosinophils - CNS manifestations Euphoria **Psychosis**

Glucocorticoids dosage forms

Available in all dosage forms

Available in many preparations

Structure activity relationship Major objective: Good antiinflammatory effect, less or no aldosterone-like activity

Metabolism:

In the liver by reduction and conjugation (90-95%); little hydroxylation reactions (5%)

Glucocorticoid preparations

Short-acting	<u>Half-life</u>	<u>AIA</u>	<u>Aldlike</u>
Corisol	10	1	1
Cortisone	10	0.8	1
Corticosterone	10	0.3	30
Fludrocortisone	10	10	150
Intermediate-acting:			
Prednisone	20	4	0.8
Prednisolone	20	5	0.8

	<u>Half-life</u>	<u>AIA</u>	<u>Aldlike</u>
Methylprednisolone	20	6	-
Triamcinolone	20	6	-
Beclomethasone	20	6	-
Long-acting:			
Betamethasone	50	25	-
Dexamethasone	50	30	
** Plasma half-life: Nucle	ar half-life		

Clinical uses to glucocorticoids:

- Adrenal insufficiency (acute; chronic, Addisonian crisis, Addison's disease...)
- Inflammatory conditions (rheumatoid arthritis, SLE, arteritis, dermatomycosis, cerebral edema, ulcerative colitis, rheumatic carditis, active chronic hepatitis, proctitis, acute gout...)
- Allergic reactions (hay fever, eczema, dermatitis), bronchial asthma, status asthmaticus

- Immunosuppressant effect (organ transplantation, hemolytic anemia, leukemias, many tumors...)
- Hypercalcemia associated with Vit. D intoxication or sarcoidosis or hyperparathyroidism or cancer...)
- Many eye, ear, and skin diseases (allergic or inflammatory)
- Side effects to glucocorticoids:
- Suppression of hypothalamic-pituitary-adrenal axis (major and most dangerous side effect)

- Cushing's syndrome

- Salt & water retention, edema, ↑ BP, obesity
- Peptic ulcer disease and GIT ulcerations
- Osteoporosis
- Diabetes mellitus
- ↑ incidence of viral and fungal infections
- \downarrow wound healing and skin atrophy and myopathy
- Suppression of growth of children
- Cataract...

Strategy in the use of glucocorticoids:

- Use a short-acting steroid
- Use a minimal possible dose
- Give 2/3 of the dose in morning and 1/3 in evening
- Use alternate day therapy which is associated with lee suppression to growth of children and to the hypothalamic-pituitary-adrenal axis and fewer side effects