LECTURE 2

- -Alcohol is most widely abused agent
- -It is the 5th leading cause of death in USA due to :
 - 1.Accidents
 - 2.Cirrhosis
- -80 100 mg/dl is the legal definition for driving under the influence of alcohol
- -44 ml of ethanol is required to produce this level in 70kg person
- -Short term ingestion of 80 gms/d of ethanol is associated with fatty change in liver

20

- In occasional drinkers, bl. Level of 200 mg/dl produces coma & death & resp. failure at 300-400 mg/dl
- -Habitual drinkers can tolerate levels up to 700 mg/dl without clinical effect due to metabolic tolerance explained by 5-10X induction of cytochrome P-450 system that includes enzyme CYP2E1 which increases the metabolism of ethanol as well as other drugs as cocaine & acetominophen

Forms of alcoholic liver disease

- 1-Hepatic steatosis (90-100% of drinkers)
- 2-Alcoholic hepatitis (1-35% of drinkers)
- 3-Cirrhosis (14% of drinkers)
- Steatosis & hepatitis may develop independently

Hepatic steatosis

- -Can occur following even moderate intake of alcohol in form of microvesicular steatosis
- -Chronic intake → diffuse steatosis
- -Liver is large (4 6 kg) soft yellow & greasy
- -Continued intake →fibrosis
- -Fatty change is reversible with complete absention from further intake of alcohol

Alcoholic hepatitis

Characteristic findings:

1-Hepatocyte swelling & necrosis

- -Accumulation of fat & water & proteins
- -Cholestasis
- -Hemosidrein deposition in hepatocytocytes & kupffer cells

2-Mallory-hayline bodies

 easinoplilic cytoplasmic inclusions in degenerating hepatocytes formed of cytokeratin infermediate filaments & other proteins

Mallory-hayline bodies

- -Mallory-hayline inclusions are characteristic but not pathognomonic of alcoholic liver disease.
- they are also seen in:
 - 1-Primary biliary cirrhosis
 - 2-Wilson disease
 - 3-Chronic cholestatic syndromes
 - 4-Hepatocellular carcinoma

- 3-Neutrophilic reaction
- 4-Fibrosis
- -Sinusoidal & perivenular fibrosis
- -Periportal fibrosis
- 5-Cholestasis
- 6-Mild deposition of hemosiderin in hepatocytes & kupffer cells

Alcoholic cirrhosis

- -Usually it develops slowly
- Initially the liver is enlarged yellow but over years it becomes brown shrunken non-fatty organ s.t < I kg in wt.
- -Micronodular → mixed micro & macronodular
- -Laennec cirrhosis = scar tissue
- -Bile stasis
- -Mallory bodies are only rarely evident at this stage
- -Irreversible
- -It can devolop rapidly in the presence of alcoholic hepatitis (within 1-2 yrs).

Ethanol metabolism

```
Ethanol
                        acetaldehyde
                    CH3 C=O
CH3 CH2OH
                             -Alcohol
 dehydrogenase
          (stomach + liver)
       -Cytochrome P-450
       -Catalase (liver)
```

Acetaldehyde → Acetic acid

↑

Aldehyde dehydrogenase

- After absorption ethanol is distributed as Acetic acid in all tissues & fluid in direct proportion to blood level
- Women have lower levels of gastric alcohol
 dehydrogenase activity than men & they may
 develop higher blood Levels than men after
 drinking the same quantity of ethanol.

- less than 10% of absorbed ethanol is excreted unchanged in urine sweat & breathe
- -There is genetic polymorphism in aldehyde dehydrogenase that affect ethanol metabolism e.g 50% of chinese, vietnamase & Japanese have lowered enzyme activity due to point mutation of the enzyme. → accumulation of acetaldehyde → facial flushing, tachycardia & hyperventilation.

- -Short term ingestion of 80gm of ethanol/day (8bears) → mild reversible hepatic changes (fatty liver)
- Long term ingestion (10-20yrs) of 160gm of ethanol per day → severe hepatic injury
- -50 60gm/day → borderline effect
- -Women are more susceptible to hepatic injury due to \gastric metabolism of ethanol.
- -Only 8 20% of alcoholics develop cirrhosis

Mechanism of ethanol toxicity

1-Fatty change

- a-Shunting of lipid catabolism toward lipid bio-synthesis due to excess production of NADH over NAD in cystol & mitochondria
- b-Acetaldehyde forms adducts with tubulin & ↓ function of microtubules → ↓ in lipoprotein transport from liver
- c- ↑ peripheral catabolism of fat → ↑ FFA delivery to the liver
- d- ↓ secretion of lipoproteins from hepatocytes
- e. \preceq oxidation of FFA by mitochondria
- 2-Induction of cytochrome P-450 enhances the metabolism of drugs to toxic metabolites (e.g acetominophen)

- 3. ↑free radicals production due to (+) of cytochrome P-450 leads to membrane & protein damage
- 4. Alcohol directly affect microtubular & mitochondrial function & membrane fluidity
- 5.Acetaldehyde causes lipid peroxidation & antigenic alteration of hepatocytes → immune attack
- 6. Superimposed HCV infection causes acceleration of liver injury (HCV hepatitis occurs in 30% of alcoholics)

- 7.Alcohol → release of bacterial endotoxins into portal circulation from the gut → inflammation of the liver
- 8. Alcohol → regional hypoxia in the liver due to release of endothelins which are potent vasoconstrictors → ↓ hepatic sinusoidal perfusion
- 9. Alteration of cytokine regulation TNF is a major effector of injury IL6 IL8 IL18

Clinical features

- -Hepatic steatosis (reversible)
- ↑ liver
- ↑ liver enz.

Severe hepatic dysfunction is unusual

- -Alcoholic hepatitis
- . 15-20 yr. of excessive drinking
- . Non-specific symptoms, malaise, anorexia, wt. loss
- ↑ liver & spleen
- **↑ LFT**

Each bout of hepatitis →10-20% risk of death

→ cirrhosis in 1/3 in few yrs.

-Cirrhosis

Portal hypertension

- Causes of death in alcoholic liver disease
- 1-Hepatic failure
- 2-Massive GI bleeding
- **3-Infections**
- 4-Hepatorenal syndrome
- 5-HCC in 3-6% of cases