Quinolones available for use are containing a
carboxylic acid moiety at position 3 of the primary ring structure

Quinolones

Nalicdicic acied

Ciprofilaxaciin

Gatifloxacirn

Norflosaciln

Levofloxamin

Moxifloxacirn

Gemifiosecin

Mechanism of Action of Fluoroquinolones

Zhanel G. Can J Infect Diss 1998, 10:207

The quinolone antibiotics target bacterial DNA gyrase and Topoisomeras

 which is responsible for the continuous introduction of negative supercoils into DNA

Break back segment

The individual strands of double-helical DNA must be
separated to permit DNA replication or transcription. However, anything that separates the strands results in "overwinding" of the DNA. To combat this mechanical obstacle, the bacterial enzyme DNA gyrase is responsible for the continuous introduction of negative supercoils into DNA

The enzyme binds to two segments of DNA (1), creating a node of positive (t) superhelix. The enzyme then introduces a double-strand break in the DNA and passes the front segment through the break (2). The break is then resealed (3), creating a negative (-) supercoil.

Quinolones inhibit the nicking and slosing activity of the gyrase and also block the activity of topoisomerase IV

Nitrofurans (Nitrofurantoin)
Chemistry and Mechanism of Action

- A number of 5 -nitro-2-furaldehyde derivatives, called nitrofurans, are used in the treatment and/or prophylaxis of microbial infections, primarily in the urinary tract
- modify various bacterial macromolecules that affect a variety of biochemical processes (e.g., DNA and RNA synthesis, protein synthesis

It is presumed that the nitrofurans are selectively toxic to microbial cells because in humans, the slower reduction by mammalian cells prevents high serum concentrations.

Nitrofurantoin is primarily active against gram-negative bacteria (E. coli,
P. mirabilis
is variable) and some susceptible gram-positive organisms, such as S . aureus and
Enterococcus faecalis

Development of resistant strains is virtually unknown, and crossresistance
 with other antimicrobials has not been reported

because

Intermediate metabolites modify various bacterial macromolecules that affect a variety of biochemical processes (e.g., DNA and RNA synthesis, protein synthesis);
this observation may explain the lack of resistance development to these drugs.

Clinical Use

- The singular indication for nitrofurantoin is the treatment and long-term prophylaxis of lower UTIs caused by susceptible bacteria it is not used as a bacterial suppressant. It is often used prophylactically post intercourse in women with chronic UTIs.

The bacteriostatic or bactericidal activity of nitrofurantoin is concentration dependent; a urinary concentration greater than $100 \mathrm{ug} / \mathrm{mL}$ ensures bactericidal activity

Nausea and vomiting are the most commonly observed adverse effects.

Methenamine

- Methenamine (hexamethylenetetramine) is an aromatic acid
- hydrolyzed at an acid pH (less than 6) to liberate ammonia and the active alkylating agent formaldehyde
- formaldehyde denatures protein and is bactericidal.
- Methenamine is usually administered as a salt
- this salt is either mandelic (Mandelamine) or hippuric (Hiprex, Urex) acid.
these acids acidify the urine, which is necessary to generate formaldehyde.
also, the resulting low urine pH is by itself bacteriostatic for some organisms
- Methenamine is administered orally and is well absorbed from the intestinal tract.
- 10 to 30% decomposes in the stomach unless the tablets are protected by an enteric coating.

The inactive form (methenamine) is distributed to virtually every bodyfluid.

- Almost all of the methenamine moiety is excreted into the urine by 24 hours
- Methenamine is primarily used for the longterm prophylactic or suppressive therapy of recurring UTIS.
- It is not a primary drug for therapy of acute infections.

It should be used to maintain sterile urine after appropriate antimicrobial agents have been employed to eradicate the infection.

