t-test
DR. HAMZA ALDURAIDI

Review 6 Steps for Significance Testing

1. Set alpha (p level).
2. State hypotheses, Null and Alternative.
3. Calculate the test statistic (sample value).
4. Find the critical value of the statistic.
5. State the decision rule.
6. State the conclusion.

t-test

t-test is about means: distribution and evaluation for group distribution

Withdrawn form the normal distribution
The shape of distribution depend on sample size and, the sum of all distributions is a normal distribution
t - distribution is based on sample size and vary according to the degrees of freedom

What is the t -test

t test is a useful technique for comparing mean values of two sets of numbers.

The comparison will provide you with a statistic for evaluating whether the difference between two means is statistically significant.
t test is named after its inventor, William Gosset, who published under the pseudonym of student.
t test can be used either :
1.to compare two independent groups (independent-samples t test)
2.to compare observations from two measurement occasions for the same group (paired-samples t test).

What is the t-test

The null hypothesis states that any difference between the two means is a result to difference in distribution.

Remember, both samples drawn randomly form the same population.
Comparing the chance of having difference is one group due to difference in distribution.

Assuming that both distributions came from the same population, both distribution has to be equal.

What is the t-test

Then, what we intend:
"To find the difference due to chance"
Logically, The larger the difference in means, the more likely to find a significant t test.

But, recall:
1.Variability

More variability $=$ less overlap $=$ larger difference
2. Sample size

Larger sample size = less variability (pop) = larger difference

Types

1. The independent-sample test is used to compare two groups' scores on the same variable. For example, it could be used to compare the salaries of dentists and physicians to evaluate whether there is a difference in their salaries.
2. The paired-sample test is used to compare the means of two variables within a single group. For example, it could be used to see if there is a statistically significant difference between starting salaries and current salaries among the general physicians in an organization.

Assumption

1. Dependent variable should be continuous (I/R)
2. The groups should be randomly drawn from normally distributed and independent populations
e.g. Male X Female

Dentist X Physician
Manager X Staff
NO OVER LAP

Assumption

3. the independent variable is categorical with two levels
4. Distribution for the two independent variables is normal
5. Equal variance (homogeneity of variance)
6. large variation $=$ less likely to have sig t test $=$ accepting null hypothesis (fail to reject) = Type II error = a threat to power

Sending an innocent to jail for no significant reason

Independent Samples t-test

Used when we have two independent samples, e.g., treatment and control groups.
Formula is:

$$
t_{\bar{X}_{1}-\bar{X}_{2}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{S E_{\text {diff }}}
$$

Terms in the numerator are the sample means.
Term in the denominator is the standard error of the difference between means.

Independent samples t-test

The formula for the standard error of the difference in means:

$$
S E_{\text {diff }}=\sqrt{\frac{S D_{1}^{2}}{N_{1}}+\frac{S D_{2}^{2}}{N_{2}}}
$$

Suppose we study the effect of caffeine on a motor test where the task is to keep a the mouse centered on a moving dot. Everyone gets a drink; half get caffeine, half get placebo; nobody knows who got what.

Independent Sample Data (Dotatare time

 off task)| Experimental (Caff) | Control (No Caffeine) |
| :--- | :--- |
| 12 | 21 |
| 14 | 18 |
| 10 | 14 |
| 8 | 20 |
| 16 | 11 |
| 5 | 19 |
| 3 | 8 |
| 9 | 12 |
| 11 | 13 |
| | 15 |
| $N_{1}=9, M_{1}=9.778,{S D_{1}=4.1164}^{2}=10, M_{2}=15.1,{S D_{2}=4.2805}$ | |

Independent Sample Steps(1)

1. Set alpha. Alpha $=.05$
2. State Hypotheses.

Null is $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$.
Alternative is $H_{1}: \mu_{1} \neq \mu_{2}$.

Independent Sample Steps(2)

3. Calculate test statistic:

$$
\begin{aligned}
& t=\frac{\bar{X}_{1}-\bar{X}_{2}}{S E_{\text {diff }}}=\frac{9.778-15.1}{1.93}=\frac{-5.322}{1.93}=-2.758 \\
& S E_{\text {diff }}=\sqrt{\frac{S D_{1}^{2}}{N_{1}}+\frac{S D_{2}^{2}}{N_{2}}}=\sqrt{\frac{(4.1164)^{2}}{9}+\frac{(4.2805)^{2}}{10}}=1.93
\end{aligned}
$$

Independent Sample Steps (3)

4. Determine the critical value. Alpha is $.05,2$ tails, and $\mathrm{df}=$ $\mathrm{N} 1+\mathrm{N} 2-2$ or $10+9-2=17$. The value is 2.11 .
5. State decision rule. If $|-2.758|>2.11$, then reject the null.
6. Conclusion: Reject the null. the population means are different. Caffeine has an effect on the motor pursuit task.

Table 4: Percentage Points of the t distribution

		α					
df	0.250	0.100	0.050	0.025	0.010	0.005	
1	1.000	3.078	6.314	12.706	31.821	63.657	
2	0.816	1.886	2.920	4.303	6.965	9.925	
3	0.765	1.638	2.353	3.182	4.541	5.841	
4	0.741	1.533	2.132	2.776	3.747	4.604	
5	0.727	1.476	2.015	2.571	3.365	4.032	
6	0.718	1.440	1.943	2.447	3.143	3.707	
7	0.711	1.415	1.895	2.365	2.998	3.499	
8	0.706	1.397	1.860	2.306	2.896	3.355	
9	0.703	1.383	1.833	2.262	2.821	3.250	
10	0.700	1.372	1.812	2.228	2.764	3.169	
11	0.697	1.363	1.796	2.201	2.718	3.106	
29	0.683	1.311	1.699	2.045	2.462	2.756	
30	0.683	1.310	1.697	2.042	2.457	2.750	
40	0.681	1.303	1.684	2.021	2.423	2.704	
60	0.679	1.296	1.671	2.000	2.390	2.660	
120	0.677	1.289	1.658	1.980	2.358	2.617	
∞	0.674	1.282	1.645	1.960	2.326	2.576	

Using SPSS

Open SPSS
Open file "SPSS Examples" for Lab 5
Go to:

- "Analyze" then "Compare Means"
- Choose "Independent samples t-test"
- Put IV in "grouping variable" and DV in "test variable" box.
- Define grouping variable numbers.
E.g., we labeled the experimental group as " 1 " in our data set and the control group as "2"

Independent t-Test

Independent t-Test: Independent \& Dependent Variables

Independent t-Test: Define Groups

Independent t-Test: Options

图Problem 4 p 154 - SPSS Data Editior

Group Statistics

	Group	N	Mean	Std. Deviation	Std. Error Mean
Ab_Error	Active	10	2.2820	1.24438	.39351
	Passive	10	1.9660	1.50606	.47626

		Levene's Test for Equality of Variances		t-test for Equality of Means							
		F	Sig.				Mean	Std. Error	95\% C Interv Diffe	dence the ce	
		t		df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
Ab_Error	Equal variances assumed		. 513	. 483	. 511	18	. 615	. 31600	.61780	-. 98194	1.61394
	Equal variances not assumed			. 511	17.382	. 615	. 31600	. 61780	-. 98526	1.61726	

Are the groups different?
$\mathrm{t}(18)=.511, \mathrm{p}=.615$
NO DIFFERENCE
2.28 is not different from 1.96

Independent Samples

Exercise

Experimental	Control
12	20
14	18
10	14
8	20
16	

You will have to enter the data into SPSS.

SPSS Results

Group Statistics

					Std. Error GROUP
TIME	experimental group		5	12.0000	3.1623
	control group	4	18.0000	1.4142	

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference		
		Lower							Upper		
TIME	Equal variances assumed		. 130	. 729	-2.958	7	. 021	-6.0000	2.0284	-10.7963	-1.2037
	Equal variances not assumed			-3.000	6.857	. 020	-6.0000	2.0000	-10.7493	-1.2507	

