Yacoub Irshaid MD, PhD, ABCP Department of Pharmacology

- Humans are exposed always to foreign compounds called xenobiotics, through the GIT, skin, lung, etc.
- Xenobiotics include drugs, environmental toxins and industrial toxins.
- Xenobiotics excreted by the kidney are usually small polar molecules, or ionized at physiologic pH.

- Many drugs are lipophilic at physiologic pH, and are readily reabsorbed from the glomerular filtrate in the nephron.
- Lipophilic drugs bound to plasma proteins are not readily filtered at the glomerulus.
- Such drugs are metabolized in the liver to more polar molecules that can be excreted in urine and bile.

- Metabolic products are often less active than the parent drug and may be even <u>inactive</u>.
 <u>Exception:</u>
- 1.Some drug metabolites have enhanced activity or even toxicity.
- 2. Some drugs are inactive and need activation by metabolism (prodrugs) like levodopa, codeine.
 3. Some drugs are metabolized into toxins.

Examples:

a)Paracetamol may be converted to the hepatotoxin N-acetyl-p-benzoquinone imine.
b)Halothane is metabolized to free radicals that are hepatotoxic.

- Biotransformation reactions can be classified as phase I or phase II reactions.
- 1. Phase I reactions usually convert the drug to more polar metabolites by introducing (or unmasking) a functional group (- OH, - NH₂, - SH), which makes them more polar to be excreted by the kidney.
- These metabolites can be inactive, less active or more active than the parent compound.

- Many phase I products may need a subsequent reaction to become polar enough to be readily excreted.
- The subsequent reactions are conjugation reactions with an endogenous substrate such as glucuronic acid, sulfuric acid, acetyl-CoA and glutathione.
- Conjugation is a phase II reactions.

- 1. Oxidations
- 2. Reductions
- 3. Hydrolysis
- Most oxidation-reduction reactions in drug metabolism are carried out by the microsomal mixed function oxidase system or cytochromes P450 enzymes.

- Cytochrome P450 enzymes are located in the endoplasmic reticulum.
- They have very low substrate specificity, and slow reaction rates.
- High lipid solubility is common to the wide variety of structurally unrelated drugs metabolized by this system.

TABLE 4-1 Phase I reactions.

Reaction Class	Structural Change	Drug Substrates
Oxidations		
Cytochrome P450-dependent oxidation	ons:	
Aromatic hydroxylations		Acetanilide, propranolol, phenobarbital, pheny- toin, phenylbutazone, amphetamine, warfarin, 17α-ethinyl estradiol, naphthalene, benzpyrene
Aliphatic hydroxylations	$\begin{array}{c} \operatorname{RCH}_2\operatorname{CH}_3 \longrightarrow \operatorname{RCH}_2\operatorname{CH}_2\operatorname{OH}\\ \operatorname{RCH}_2\operatorname{CH}_3 \longrightarrow \operatorname{RCHCH}_3\\ \\ \operatorname{OH} \end{array}$	Amobarbital, pentobarbital, secobarbital, chlor- propamide, ibuprofen, meprobamate, gluteth- imide, phenylbutazone, digitoxin
Epoxidation	$\begin{array}{c} H & O & H \\ & & & \\ RCH = CHR \longrightarrow R - C - C - R \end{array}$	Aldrin
Oxidative dealkylation		
N-Dealkylation	$RNHCH_3 \longrightarrow RNH_2 + CH_2O$	Morphine, ethylmorphine, benzphetamine, ami- nopyrine, caffeine, theophylline
O-Dealkylation	$\text{ROCH}_3 \longrightarrow \text{ROH} + \text{CH}_2\text{O}$	Codeine, <i>p</i> -nitroanisole
S-Dealkylation	$\text{RSCH}_3 \longrightarrow \text{RSH} + \text{CH}_2^{O}$	6-Methylthiopurine, methitural

N-Oxidation

Primary amines	$RNH_2 \longrightarrow RNHOH$	Aniline, chlorphentermine
Secondary amines	$ \begin{array}{c} R_1 \\ NH \longrightarrow \\ R_2 \\ \end{array} \begin{array}{c} R_1 \\ N-OH \\ R_2 \end{array} $	2-Acetylaminofluorene, acetaminophen
Tertiary amines	$ \begin{array}{cccc} R_1 & R_1 \\ R_2 & & & R_2 \\ R_3 & & & R_3 \end{array} \\ \begin{array}{c} R_1 & & & R_1 \\ R_2 & & & & & N \rightarrow O \\ \end{array} $	Nicotine, methaqualone
S-Oxidation	$ \begin{array}{c} R_1 \\ S \\ R_2 \end{array} \xrightarrow{R_1} S = 0 \\ R_2 \end{array} $	Thioridazine, cimetidine, chlorpromazine
Deamination	$\begin{array}{c} OH \\ \\ RCHCH_3 \longrightarrow R - C - CH_3 \longrightarrow R - CCH_3 + NH_3 \\ \\ \\ NH_2 \\ NH_2 \\ O \end{array}$	Amphetamine, diazepam
Desulfuration	$ \begin{array}{c} R_1 \\ c = s \rightarrow \\ R_2 \\ R_2 \\ \end{array} \begin{array}{c} R_1 \\ c = 0 \\ R_2 \end{array} $	Thiopental
	$ \begin{array}{c} R_1 & R_1 \\ P = S \longrightarrow & P = 0 \\ R_2 & R_2 \end{array} $	Parathion
Dechlorination	$CCI_4 \longrightarrow [CCI_3^{\bullet}] \longrightarrow CHCI_3$	Carbon tetrachloride

Cytochrome P450-independent oxidations:

Flavin monooxygenase (Ziegler's enzyme)	$R_{3}N \longrightarrow R_{3}N^{+} \rightarrow O^{-} \xrightarrow{H^{+}} R_{3}N^{+}OH$	Chlorpromazine, amitriptyline, benzphetamine	
	$\begin{array}{c} \operatorname{RCH}_{2}\operatorname{N} - \operatorname{CH}_{2}\operatorname{R} \longrightarrow \operatorname{RCH}_{2} - \operatorname{N} - \operatorname{CH}_{2}\operatorname{R} \longrightarrow \\ \\ H \\ \operatorname{RCH} = \operatorname{N} - \operatorname{CH}_{2}\operatorname{R} \\ \\ \operatorname{O}^{-} \end{array}$	Desipramine, nortriptyline	
	$ \begin{array}{ccc} -N & -N & -N \\ & & \\ & \\ & \\ -N & -N & $	Methimazole, propylthiouracil	
Amine oxidases	$RCH_2NH_2 \longrightarrow RCHO + NH_3$	Phenylethylamine, epinephrine	
Dehydrogenations	RCH ₂ OH → RCHO	Ethanol	
Reductions			
Azo reductions	$RN = NR_1 \longrightarrow RNH - NHR_1 \longrightarrow RNH_2 + R_1NH_2$	Prontosil, tartrazine	
Nitro reductions	$RNO_2 \longrightarrow RNO \longrightarrow RNHOH \longrightarrow RNH_2$	Nitrobenzene, chloramphenicol, clonazepam, dantrolene	
Carbonyl reductions	RCR' → RCHR' O OH	Metyrapone, methadone, naloxone	
Hydrolyses			
Esters	$R_1 COOR_2 \longrightarrow R_1 COOH + R_2 OH$	Procaine, succinylcholine, aspirin, clofibrate, methylphenidate	
Amides	$\text{RCONHR}_1 \longrightarrow \text{RCOOH} + \text{R}_1\text{NH}_2$	Procainamide, lidocaine, indomethacin	

Human Liver Cytochrome P450 Enzymes

- There are numerous P450 isoenzymes.
- The most important are CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, and CYP3A4.
- CYP1A2, CYP2C9, and CYP3A4 acount for 15%, 20%, and 30% of the total human liver P450 content, respectively.
- CYP3A4 alone is responsible for the metabolism of > 50% of prescription drugs metabolized in the liver.

- The drug is conjugated with endogenous substrates to yield drug conjugates.
- <u>In general</u>, conjugates are polar molecules readily excreted and inactive.
- Conjugations are synthetic reactions, involve high-energy intermediates and specific transfer enzymes called transferases.

- Uridine 5'-diphosphate [UDP]-glucuronosyl transferases (UGTs) are the most dominant conjugating enzymes. Groups glucuronidated are –OH, -NH, -SH, -COOH, -NHOH.
- Sulfotransferases (SULTs) use 3'phosphoadenosine 5'-phosphosulfate (PAPS). Inorganic sulfate is a limiting factor for sulfation. Its sources are food and sulfur-containing amino acids.

- Almost all chemical groups that are glucuronidated are also sulfated.
- Infants are more capable of sulfation than glucuronidation, but in adults glucuronidation predominates.
- 3. N-acetyltransferases (NATs) utilize acetyl CoA as the endogenous cofactor for conjugation.

- 4. Glutathione (GSH) transferases (GSTs).
- The donor is glutathione (GSH), which is Glu-Cys-Gly.
- GSH is a nucleophile that reacts with and detoxifies electrophiles.
- Cause halogen replacement (R-Cl \rightarrow R-SG).
- Conjugates epoxides.

- Glutathione conjugates do not appear in urine, but may appear in bile.
- They are metabolized further to cysteine conjugates and then to mercaptouric acid conjugates (N-acetylated cysteine conjugates), that appear in urine by an active transport process.

- 5. S-Adenosyl-L-methionine (SAM) mediate O-, Nand S-methylation of drugs and xenobiotics by methyltransferases (MTs).
- Phase II reactions are relatively faster than Phase I reactions.

TABLE 4-3 Phase II reactions.

Type of Conjugation	Endogenous Reactant	Transferase (Location)	Types of Substrates	Examples
Glucuronidation	UDP glucuronic acid	UDP glucuronosyltrans- ferase (microsomes)	Phenols, alcohols, carboxylic acids, hydroxylamines, sulfonamides	Nitrophenol, morphine, acetaminophen, diazepam, N-hydroxydapsone, sulfathi- azole, meprobamate, digitoxin, digoxin
Acetylation	Acetyl-CoA	N–Acetyltransferase (cytosol)	Amines	Sulfonamides, isoniazid, clon- azepam, dapsone, mescaline
Glutathione conjugation	Glutathione (GSH)	GSH-S-transferase (cytosol, microsomes)	Epoxides, arene oxides, nitro groups, hydroxylamines	Acetaminophen, ethacrynic acid, bromobenzene
Glycine conjugation	Glycine	Acyl-CoA glycinetrans- ferase (mitochondria)	Acyl-CoA derivatives of carboxylic acids	Salicylic acid, benzoic acid, nicotinic acid, cinnamic acid, cholic acid, deoxycholic acid
Sulfation	Phosphoadenosyl phosphosulfate	Sulfotransferase (cytosol)	Phenols, alcohols, aromatic amines	Estrone, aniline, phenol, 3- hydroxycoumarin, acetamin- ophen, methyldopa
Methylation	S-Adenosylmethionine	Transmethylases (cytosol)	Catecholamines, phenols, amines	Dopamine, epinephrine, pyridine, histamine, thiouracil
Water conjugation	Water	Epoxide hydrolase (microsomes) (cytosol)	Arene oxides, <i>cis</i> -disubstituted and monosubstituted oxiranes Alkene oxides, fatty acid epoxides	Benzopyrene 7,8-epoxide, styrene 1,2-oxide, carbam- azepine epoxide Leukotriene A ₄

 Certain conjugation reactions may lead to formation of reactive species and drug toxicities.

Examples:

- a) Acyl glucuronidation of nonsteroidal antiinflammatory drugs
- b)O-sulfation of N-hydroxyacetylaminofluorine
- c) N-acetylation of isoniazid
- d)Sulfation leads to activation of the prodrug minoxidil.
- e) Morphine-6-glucuronide is more potent than morphine.

- Several drugs may be metabolically transformed to reactive intermediates that are toxic to various organs.
- Such toxic reactions may become apparent at high drug doses, especially when alternative detoxification mechanisms are overwhelmed or endogenous detoxifying cosubstrates (GSH, glucuronic acid, sulfate) are depleted.

- An example is acetaminophen (paracetamol)induced hepatotoxicity.
- It normally undergoes glucuronidation and sulfation, which make up 95% of the total excreted metabolites.
- The alternative P450-dependent GSH conjugation pathway accounts for the remaining 5%.

- No hepatotoxicity results as long as hepatic GSH is available for conjugation.
- At high paracetamol dose and when GSH is depleted, the toxic metabolite accumulates resulting in hepatotoxicity.

- Administration of N -acetylcysteine (antidote) within 8–16 hours after acetaminophen overdosage protects victims from fulminant hepatotoxicity and death.
- Administration of GSH is not effective because it does not cross cell membranes readily.

- It means enhanced rate of enzyme synthesis, or reduced rate of degradation.
- Results in accelerated drug metabolism, and usually in a decrease in the pharmacological action of the drug.
- Toxicity may increase if the drug is metabolized to reactive metabolites.
- Induction mostly starts at the gene level.

Inducers include (but are not limited to):

- 1. Environmental chemicals and pollutants such as polycyclic aromatic hydrocarbons present in tobacco smoke and charcoal-broiled meat, and other pyrolysis products (induce CYP1A).
- 2. Drugs: barbiturates, phenytoin, rifampin ritonavir, dexamethasone, clofibrate, oral contraceptives, spironolactone...

- Environmental chemicals known to induce specific P450s include the polychlorinated biphenyls (PCBs), and 2,3,7,8tetrachlorodibenzo- p -dioxin (dioxin, TCDD), a trace byproduct of the chemical synthesis of the defoliant 2,4,5-T.
- 4. Cruciferous vegetables.
- 5. St. John's wort.
- 6. Ethanol (CYP2E1), isosafrole (CYP1A2).

- Autoinduction refers to a drug that induces its own metabolism, like carbamazepine.
- Autoinduction may lead to tolerance to drug action.

Enzyme Inhibition

- 1. Imidazole-containing drugs such as cimetidine and ketoconazole bind tightly to the P450 heme iron and effectively reduce the metabolism of drugs through competitive inhibition.
- 2. Macrolide antibiotics such as erythromycin, complex the cytochrome P450 heme iron and inactive it (CYP3A).

Enzyme Inhibition

- 3. Some drugs (such as chloramphenicol metabolite) irreversibly inhibit P450s by covalent interaction that destroys P450 apoprotein or heme moiety.
- 4. Suicide inhibitors (inactivators) include certain steroids (ethinyl estradiol, norethindrone, and spironolactone); allobarbital; grapefruit furanocoumarins; selegiline; phencyclidine; ticlopidine and clopidogrel; ritonavir; and propylthiouracil...

Enzyme Inhibition

- 5. Substrates compete with each other for the same active site of the enzyme.
- 6. Deficiency of cofactors impair drug metabolism.
- 7. Inhibitors of nucleic acid and protein synthesis impair enzyme synthesis and, thus, drug metabolism.
- 8. Malnutrition.
- 9. Impairment of hepatic function.