Glycogen Metabolism

Dr. Diala Abu-Hassan

Textbook

Lippincott's Illustrated reviews: Biochemistry

Sources of Blood Glucose

• Diet

- Starch, mono and disaccharides, glucose
- Sporadic, depend on diet
- Gluconeogenesis
 - Sustained synthesis
 - Slow in responding to falling blood glucose level
- Glycogen
 - Storage form of glucose
 - Rapid response
 - Limited amount
 - Important energy source for exercising muscle

Glycogen Structure

* Extensively branched homopolysaccharide

* One molecule consists of hundreds of thousands of glucose units

Glycogen synthesis & degradation

Glycogen Degradation

- Liver glycogen stores increase during the well-fed state and are depleted during fasting
- Muscle glycogen is not affected by short periods of fasting (a few days) and is only moderately decreased in prolonged fasting (weeks).

HO CH CO-PO3

Remaining glycogen

Degradation of glycogen (Glycogenolysis)

Degradation of glycogen One glucose unit is removed at a time

Starts from the nonreducing ends

Released in the form of glucose 1-phosphate

G-1-P is converted in the cytosol to G-6-P by phosphoglucomutase

Lysosomal degradation of glycogen

- A small amount (1–3%) of glycogen is degraded by the lysosomal enzyme, α(1–4)-glucosidase (acid maltase).
- The purpose of this pathway is unknown.
- A deficiency of this enzyme causes accumulation of glycogen in vacuoles in the lysosomes (Type II: Pompe disease)

Glycogen Synthesis

Glycogen is synthesized by adding glucose one by one UDP-Glucose is the active donor of glucose units

Formation of UDP-Glucose

Glycogen Synthesis

- Genetic diseases
- Defect in an enzyme required for synthesis or degradation →
- Accumulation of excessive amount of abnormal glycogen (synthesis) or normal glycogen (degradation)
- In one or more tissue
- Severity: FATAL in Infancy...... Mild disorder

• | Glucose-6-phosphatase (von Gierke disease)

- Liver, kidney and intestine.
- Severe fasting hypoglycemia
- Hepatomegaly fatty liver.
- Normal glycogen structure.
- Progressive renal disease.
- Growth retardation.

- V Muscle glycogen phosphorylase (McArdle syndrome)
- Skeletal muscle glycogen phosphorylase deficiency
 - Only muscle is affected;
 - Weakness and cramping of muscle after exercise
 - no increase in [lactate] during exercise

- II Lysosomes α (1→4) glucosidase → POMPE
 Disease
- Degradation of glycogen in the lysosomes
- ≈ 3% of glycogen is degraded in the lysosomes
- Affects liver, heart and muscle
- Excessive glycogen in abnormal vacuoles in the lysosomes
- Massive cardiomegaly
- Normal blood sugar, normal glycogen structure
- Early death from heart failure.

Energy needed for glycogen synthesis

Glucose + ATP -----> Glucose 6-phosphate + ADP

Glucose 1-phosphate UTP \longrightarrow UDP-Glucose PP_i PP_i + H₂O \longrightarrow 2P_i UDP-Glucose + Glycogen_(n) \longrightarrow UDP + Glycogen_(n+1)

Glc. + ATP+ UTP+ Glycogen_(n) \rightarrow ADP + UDP + Glycogen_{(n+1}

The net reaction in glycogen synthesis and degradation

Glucose 1-phosphate + UTP UDP-Glucose + PP_i $PP_i + H_2O \rightarrow 2P_i$ UDP-Glucose + Glycogen_(n) UDP + Glycogen_(n+1)

Glc. 1-phosph. + UTP+Glycogen_(n) JUDP +Glycogen_{(n+1}

Degradation

 $Glycogen_{(n)} + P_i \iff Glycogen_{(n-1)} + Glc. 1-phosphate$

Hormonal Regulation of Glycogen Metabolism

Regulation of Glycogen Synthesis

Phosphorylation at several sites

Inhibition is proportional to the degree of phosphorylation

GLYCOGEN SYNTHESIS

Allosteric Regulation of **Glycogen** Metabolism

in well-fed state

Rapid response to cell's needs Available substrate and $ATP \rightarrow$ synthesis

 $\downarrow \downarrow \Box$ Glucose and $\downarrow ATP \rightarrow$ Glycogenolysis

Ca⁺² -Calmodulin Complex Function

Calcium Activation of liver phosphorylase Kinase

Glycogen Metabolism Regulation

