ENZYMES (3)

Done by: Abdelhadi okasha

Enzyme classification (structure)

- **Simple**: Work without coenzymes

Complex : Need coenzyme (cofactor) to work
If bound to coenzyme then called "holoenzyme" if not, then called "apoenzyme" Topic discussed in this lecture

Naming of enzymes

substrate+reaction+ase
 e.g. ATPsynthase
 (most common)
 product+reaction+ase
 e.g. Citrate synthase
 (less common)
 inherently named that
 don't give much info
 about function
 e.g. pepsin, chymotrypsin

EC numbering: numbers specify enzymecatalazed reaction (not enzymes) formed of 4 digits EC a.b.c.d a)Major class (1-7) b) Minor class c) subclass d) further subclassification. Enzyme classification (Function)

1)**Oxidoreductase**: transfer of hydrogen atoms, electrons or oxygen

2)**transferase**: transfer a functional group from one substrate to an acceptor molecule.

3) **Hydrolysis**: These enzymes catalyze cleavage reactions

4) **Lyase**: addition of a molecule to a double bond or reverse.

5) **Isomerase:** same substrate differ in arrangement of atoms

6) Ligase: join two substrates

7) **Translocases**: Catalyze the movement of ions or molecules across membranes or their separation within membranes

Naming of enzymes

1)**substrate+reaction+ase** e.g. **ATPsynthase** (most common)

2) product+reaction+ase e.g. Citrate synthase (less common)

Note: most enzymes end with "ase"

3) inherently named that don't give much info about function e.g. pepsin, chymotrypsin

EC numbering: numbers specify enzymecatalazed reaction (not enzymes). formed of 4 digits EC a.b.c.d a)Major class (1-7) b) Minor class c) subclass d) further sub-classification. e.g. tripeptide aminopeptidases "EC 3.4.11.4" EC 3: hydrolases EC 3.4: hydrolases that act on peptide bonds EC 3.4.11: hydrolases that cleave off the aminoterminal of the amino acid polypeptide EC 3.4.11.4: cleave off the amino-terminal end from a tripeptide

- 1) Oxidoreductase: transfer of hydrogen atoms, electrons or oxygen (conjugated enzymes)
- Oxidation: gain of oxygen, or loss of electrons, or increasing in oxidation number, or loss of hydrogen
- Reduction: loss of oxygen, or gaining of electrons, or decreasing in oxidation number, or gaining of hydrogen
- Oxidation and reduction occur with each other

A (oxidized) + B (reduced) $\rightarrow \rightarrow A$ '(reduced) + B'(oxidized)

 This group can be further divided into 4 minor classes: Dehydrogenase, oxidase, peroxidase, oxygenase

- 1st) Dehydrogenase: hydrogen transfer from the substrate to an electron recipient (mostly NAD+)
- e.g.1. lactate dehydrogenase
- e.g.2 Alcohol dehydrogenase

Lactate + NAD⁺ \leftrightarrows Pyruvate + NADH + H⁺

- \circ 2nd) Oxidase : transfer hydrogen from the substrate to molecular oxygen producing H_2O_2
- E.g. Glucose oxidase

- 3rd) peroxidase : catalyze oxidation of a substrate by hydrogen peroxide.
- E.g. Oxidation of two molecules of glutathione (GSH) in the presence of hydrogen peroxide

- \circ 4th) oxygenase : catalyze substrate oxidation by molecular O₂.
- \circ E.g. The reduced product of the reaction in this case is water not H_2O_2
- There are two types of oxygenase:

Monooxygenases: transfer one oxygen atom to the substrate, and reduce the other oxygen atom to water

Dioxygenases: incorporate both atoms of molecular oxygen (O2) into the product(s) of the reaction

• 2) Transferase: These enzymes transfer a functional group (C, N, P or S) from one substrate to an acceptor molecule.

 $A + B - C \rightarrow \rightarrow A - B + C$

• This group can be further divided into 2 minor classes: Kinase, and transaminase

 1st) Kinase: transfer of a phosphate group from one molecule (usually ATP) to another.
 Phosphofructokinase: catalyzes transfer of phosphate from ATP to fructose-6 phosphate.
 Fructose 6-P + ATP ↔ F 1,6 bisphosphate + ADP

 2nd) transaminase OR aminotransferases: transfers an amino functional group from one amino acid to a keto acid converting the amino acid to a keto acid and the keto acid to an amino acid

Amino acids	Their corresponding keto acids
alanine	pyruvate
Glutamic acid	Alpha ketoglutaric acid OR Alpha keto glutarate
Aspartic acid Aspartate (4 C)	Oxaloacetate

3) Hydrolase : addition of water for cleavage reactions (for all macromolecules)
 H₂○ + B-C → → B-H + C-OH

 This group can be further divided into many minor classes: Peptidases (minor class 4), esterases, lipases, glycosidases, phosphatases are all examples of hydrolases named depending on the type of bond cleaved

• Note: anything was formed by a condensation reaction can go through hydrolysis reaction

- Trypsin, is quite specific; catalyzes the splitting of peptide bonds only on the carboxyl side of lysine and arginine
- Thrombin, catalyzes the hydrolysis of Arg-Gly bonds in particular peptide sequences only

• 4) Lyases: addition of a molecule (H2O, CO2, NH3) to a double bond between C-C, C-O and C-N or reverse (non-hydrolytic) $A = C = C + H_2O = A - C - C - B$

Aldolase; breaks down fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehydes-3-phosphate

F 1,6 bisphosphate \$\DHAP + GAP

Enolase; interconverts phosphoenolpyruvate and 2phosphoglycerate by formation and removal of double bonds

 • 5) isomerase: catalyze intramolecular rearrangement, there is 1 substrate and 1 product only (mutase is a common minor class)

- Glucose-6-phosphate isomerase; isomerizes glucose-6-phosphate to fructose-6-phosphate
- Phosphoglycerate mutase; transfers a phosphate group from carbon number 3 to carbon number 2 of phosphorylated glycerate (BPG intermediate)
- > 3-P glycerate rightarrow 2 P glycerate

• 6)Ligase: join C-C, C-O, C-N, C-S and C-halogen bonds (need energy)

Pyruvate carboxylase

 7) Translocase: catalyze the movement of ions or molecules across membranes or their separation within membranes

1)Oxidoreductase: transfer of hydrogen atoms, electrons or oxygen (need coenzyme) -4 minor classes: **a**- Dehydrogenase: transfer hydrogen from substrate to NAD+ usually **b-** Oxidase: transfer hydrogen from the substrate to molecular oxygen producing H₂O₂ c-Peroxidase: catalyze oxidation of a substrate by H_2O_2 d-Oxygenase: catalyze substrate oxidation by molecular O_2 , may be monooxygenase or dioxygenase

2)**transferase**: transfer a functional group (C, N, P or S)from one substrate to an acceptor molecule. - 2 minor classes: 1- kinases (transfer of a phosphate group from one molecule to another. The most common source for phosphate group is (ATP) **2-** Transaminase: transfers an amino functional group from one amino acid to a keto acid (it has an acidic part and ketone part), converting the amino acid to a keto acid and the keto acid to an amino acid.

3) **Hydrolase**: These enzymes catalyze cleavage reactions while using water across the bond being broken.

4) **Lyase**: addition of a molecule (H2O, CO2, NH3) to a double bond or reverse (non-hydrolytic).

5) **Isomerase:** one substrate and one product

6) **Ligase**: join C-C, C-O, C-N, C-S and C-halogen bonds

7) **Translocases**: Catalyze the movement of ions or molecules across membranes or their separation within membranes (ATP/ADP translocase)