
AMINO ACIDS: GENERAL STRUCTURE:

*Naming Carbons After Ca:

STEREOISOMERISM:

RECALL:

Latin **laevus** and **dexter**, meaning "**left**" and "**right**", respectively. (the ability to rotate polarized light to the left or the right)

*Based on Which Group? Amino group

*The amino acids in proteins are not superimposable on their mirror images (with the exception of **glycine**, because its Rgroup is **H**).

NOTE:

The amino acids that occur in proteins naturally are all of the L form.

D-amino acids occur in nature, in bacterial cell walls and in some antibiotics, but not in proteins.

TYPES OF AMINO ACIDS:

*There are 20 types of amino acids depending on the side chains varying in: •Size

- Shape
- Charge
- Hydrogen-bonding capacity
- Hydrophobic character
- Chemical reactivity

*Classification of Amino Acids According to Polarity and Charge of the R-Group:

Read this NOTE After Checking the Tables:

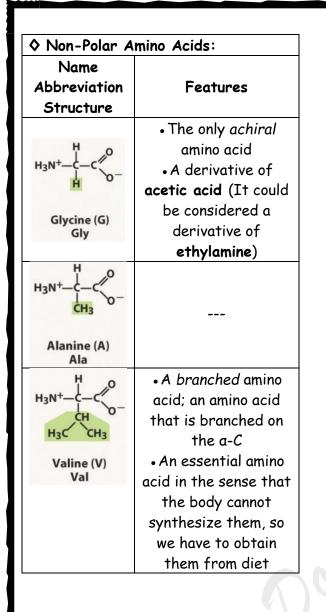
NOTES:

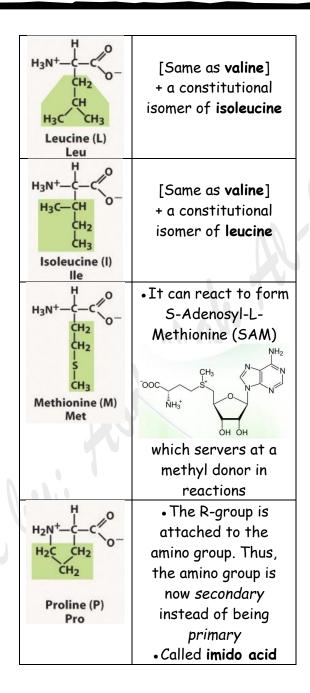
-Exceptions:

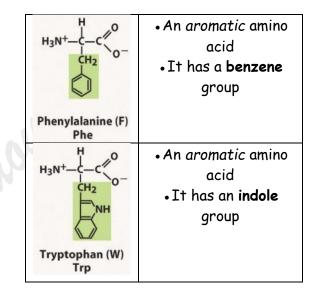
•Glycine; achiral

•Proline (imido acid): the R-group is attached to the amino group. Thus, the amino group is now *secondary* instead of being *primary*

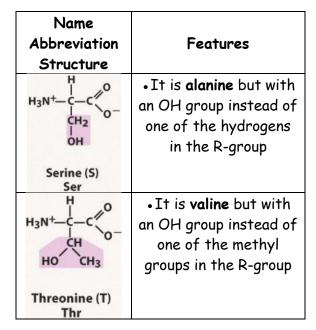
-Amino Acids that has a Functional Group within the R-Group: Serine (OH) / Threonine (OH) /

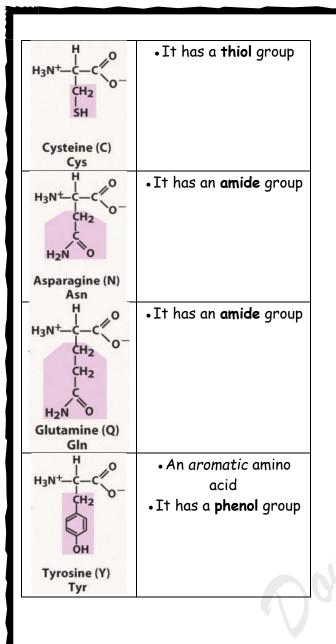

Cysteine (SH) / Asparagine (amide) / Glutamine (amide) / Lysine (amine) / Aspartate (carboxyl) /Glutamate (carboxyl)/ Phe + Trp + Tyr (arene)

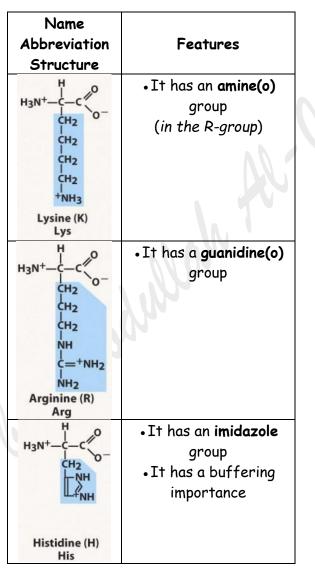

-Amino Acids that Contains Sulfur in their R-Group:


Methionine / Cysteine

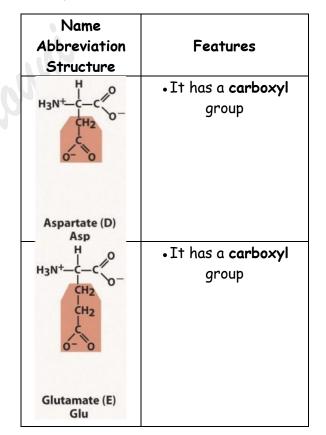
-Essential Amino Acids:


Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Threonine, Tryptophan and Valine.



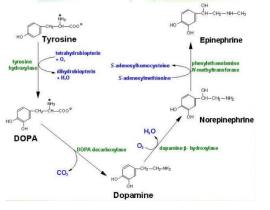


♦ Polar Amino Acids (Non-Charged):



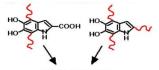
♦ Polar Amino Acids (Positively Charged = Basic):

♦ Polar Amino Acids (Negatively Charged = Acidic):


AMINO ACIDS' DERIVATIVES:

α-nitrogen atom of amino acids is a primary source for many nitrogenous compounds: <u>Hormones</u>/<u>Neurotransmitters</u>/<u>Biologically</u> <u>active peptides</u>

*Tyrosine Derivatives:


\Diamond Catecholamine Neurotransmitters:

i.e. Dopamine/ Norepinephrine/ Epinephrine Used in activating fight or flight system.

♦ Melanin:

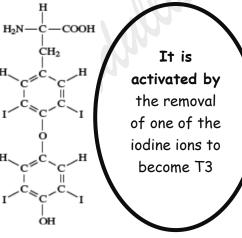
For skin color.

EUMELANINS For lighter or darker skin color

PHEOMELANINS For red-colored hair

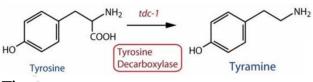
\$ Thyroxine Hormone (Thy = T4): Used in:

• Regulating metabolic processes inside our cells


• Playing a role in neuronal development of the fetus

Produced from the thyroid gland

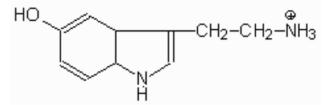
How Does it Form?


A protein called **thyroglobulin** -also produced from the thyroid gland- has different amino acids including **tyrosine**.

A **phenol group** is added to the **tyrosine** molecule, in addition to 4 **iodine ions**.

♦ Tyramine:

Cheese contain high amounts of **tyramine**, which mimics **epinephrine**. For many people a cheese omelet in the morning is a favorite way to start the day.

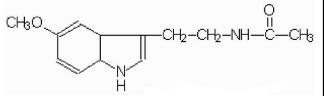

Thus;

Tyramine = Decarboxylated Tyrosine

*Tryptophan Derivatives:

A precursor for the synthesis of Neurotransmitters

Serotonin (5-hydroxutryptamine): Neurotransmitter-sedative



Thus;

Serotonin = Hydroxylated Decarboxylated Tryptophan

♦ Melatonin:

Produced by the pineal gland **Regulates** the day-night cycle.

*Histidine Derivatives:

♦ Histamine:

Produced by a number of cells, **i.e.** mast cells

Regulates physiological function in the gut **Acts as** a vasodilator

Acts as a neurotransmitter

Causes allergic symptoms (a major causes for asthma)

Contributes to inflammatory response **Causes** constriction of smooth muscle

Treated by anti-histamines

 $CH_2 - CH_2$

NH

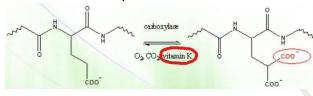
→ Histamine = Decarboxylated Histidine

*Glutamate Derivatives:

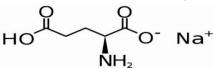
🛇 GABA:

An inhibitory neurotransmitter (CNS) that reduces neuronal excitability.

Synthesized in brain because it does not cross the BBB.


GABA have relaxing, anti-anxiety, and anticonvulsive effects.

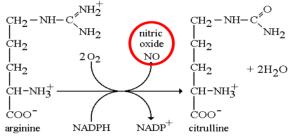
OOC-CH₂-CH₂-CH₂-NH₃


→ GABA = Decarboxylated Glutamate

◊ γ- carbo×yglutamate (Gla):

Important in blood clotting (coagulation) [more negative charge attracts Ca²⁺, which is essential in such process]

♦ Monosodium Glutamate (MSG):


SODIUM SALT OF GLUTAMIC ACID

It is a flavor enhancer used in the Asian food.

MSG causes a physiological reaction in some people, **i.e.** chills, headaches and dizziness = *Chinese restaurant syndrome*.

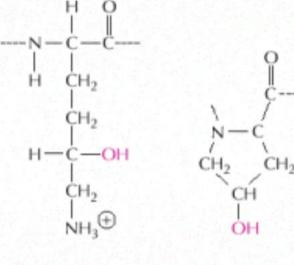
*Arginine Derivatives:

We're going to talk about **Nitric Oxide** (NO), which is not an **arginine derivative**, but it is a by-product of the reaction that converts **arginine** to **citrulline**.

-L-arginine is the precursor of nitric oxide (NO)

-NO functions:

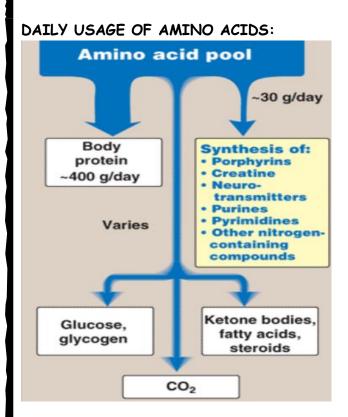
Vasodilation


• Inhibition of platelet adhesion

• Inhibition of leukocyte adhesion

Antiproliferative action

• Scavenging superoxide anion (antiinflammatory)


*Lysine and Proline Derivatives:

hydroxylysine in protein

hydroxyproline in protein

Produced by modification -*specifically hydroxylation*- of the parent amino acid after protein synthesis; **posttranslational modification**.

IONIZATION OF AMINO ACIDS: -In the backbone of each amino acid, there are 2 protons that can be removed (Deprotonation) COOH

Thus, each amino acid, at least, will have 2 midpoints in the titration curve. [RECALL: Titration Curve] -For Certain Amino Acids, there will be 3 midpoints:

•The 3 Basic Amino Acids; has an additional H_3N^{\star} in their side chains

• The 2 Basic Amino Acids; has an additional COOH in their side chains

Cysteine; has a SH group in its side chain
Tyrosine, Serine and Threonine; has an
OH group in their side chains

*Why Do We Study Such Topic?

This topic discusses what form of a certain amino acid is expected to be found in a certain pH.

*Important Points to Start with:

-**p** K_{α} is the value that determines the quantity of H⁺ (thus ⁻OH) in a certain solution.

Higher pK_a = Lower $[H^*]$ = Higher $[^{-}OH]$ \rightarrow less acidic

Lower pK_{α} = Higher $[H^{+}]$ = Lower $[^{-}OH]$ \rightarrow more acidic

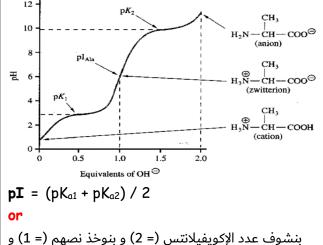
-Each proton that is able to be

deprotonated has a certain pK_a value; a certain amount (equivalents) of ^{-}OH that must be added for this particular proton to be released.

Proton to be	pKa Required for	
released	it to be released	
H from COOH of		
the backbone of any	2.00	
amino acid		
One H from H₃N⁺		
of the backbone of	9.00	
any amino acid		
One H from H₃N⁺		
of the side chain of	11.0	
Lysine		
One H from H₃N⁺		
of the side chain of	12.5	
Arginine		
One H from H₃N⁺		
of the side chain of	6.00	
Histidine		
H from COOH of		
the side chain of	4.00	
Aspartate		
H from COOH of		
the side chain of	4.10	
Glutamate		
H from SH of the		
side chain of	8.00	
Cysteine		

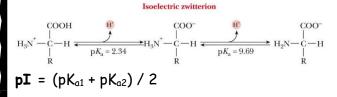
-The lower the pK_{α} of the acid, the faster the proton is released

 $-pH = pK_{\alpha}$ at the midpoint in the titration curve

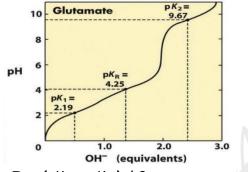

-Zwitterion: a molecule with two opposite charges and a net charge of zero

-Isoelectric Point (pI): The pH where the net charge of a molecules such as an amino acid or protein is zero is known as isoelectric point or pI

*Calculation of pI for:


- Amino Acids with ONLY 2 Midpoints
- (= 2 Equivalent Points):

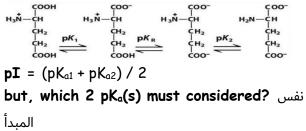
-From the Diagram:

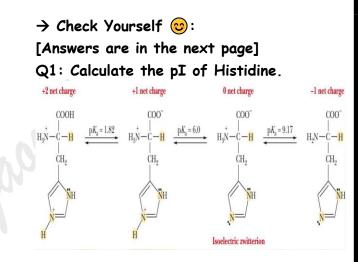

بنشوف درجة الحموضة اللي على المحور الصادي و هي نفسها نقطة تساوي الشحنات اللي بدنا إياها

-From Numbers:

 \diamondsuit Amino Acids with 3 Midpoints

- (= 3 Equivalent Points):
- -From the Diagram:

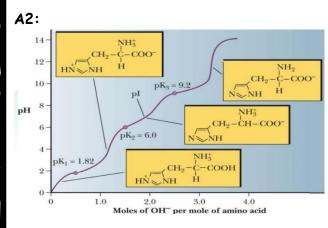

 $pI = (pK_{a1} + pK_{a2}) / 2$


but, which 2 $pK_a(s)$ must considered? The one when we have +1 net charge and the one we have -1 net charge in this case; $pK_{a1} = pK_1$ and $pK_{a2} = pK_R$

or

بنشوف عدد الإكويفيلانتس في أول ميدبوينت (= 0.5) و عدد الإكويفيلانتس في تاني ميدبوينت (= 1.5) و بنوخذ نصهم (= 1) و بنشوف درجة الحموضة اللي على المحور الصادي و هي نفسها نقطة تساوي الشحنات اللي بدنا إياها

-From Numbers:


Q2: Draw the titration curve of histidine.

Q3: What is the ratio of the conjugate base/acid of glutamate at pH 4.5?

Q4: What is the total charge of lysine at pH 7?

→ Answers:

A1: pI ≈ 7.6

A3: 5: 2

pH = pKa + log [deprotonated glutamate/ glutamate] 4.5 = 4.1 + log [deprotonated glutamate/ glutamate] 0.4 = log [deprotonated glutamate/ glutamate] [deprotonated glutamate/ glutamate] = 2.5 [deprotonated glutamate/ glutamate] = 5:2

A4: +1

Why?

At **pH 7**, **lysine** has a **net charge** of very close to +1. The carboxylic acid group is fully *deprotonated* (-1 charge). The alpha amino group is about 99% <u>protonated</u> (+1 charge). The side chain amino group is fully <u>protonated</u> (+1 charge) \rightarrow -1 + +1 + +1 = +1 Q-BANK FROM PAST PAPERS:

1) Which of the following amino acids is

the precursor of NO?

- A) Arginine
- B) Asparagine
- C) Glycine
- D) Alanine
- E) Glutamate

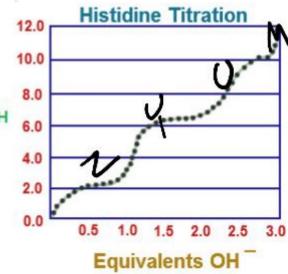
2) Aspartic acid in the pH of 5 is mostly:

A) Cationic

- B) Anionic
- C) Zwitterion
- D) More than one of the above
- E) None of the above

3) Which of the following amino acids can

be attached to an oligosaccharides chain?


A) Lysine

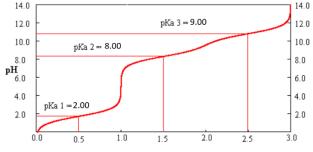
- B) Tyrosine
- C) Threonine
- D) Tryptophan
- E) Proline
- 4) Which of the following is a positive

amino acid with a guanidine group?

- A) Aspartic Acid
- B) Arginine
- C) Glutamate
- D) Proline
- E) Histidine

5) According to the graph of Histidine's titration curve, in which phase is Histidine in its zwitterionic state?

- A) Phase (Z)
- B) Phase (Y)
- C) Phase (U)
- D) Phase (M)


E) More than one of the above

6) Which of these is not a functional

group in naturally occurring amino acids?

- A) Thiol
- B) Alkene
- C) Hydroxyl
- D) Amino
- E) Carboxyl

7) The following graph represents the titration curve of:

A) Lysine

- B) Aspartic Acid
- C) Glutamic Acid
- D) Cysteine
- E) Histidine

8) Which of the following gives a good protein buffer system?

A) His

- B) Arg
- C) Asp
- D) Asn

E) More than one of the above

9) Which amino acid cannot be found in human proteins?

- A) Histidine
- B) Ornithine
- C) Serine
- D) Glycine
- E) Glutamic acid

10) What charged groups Glutamine has at physiological PH in the blood? A) COO^- , H_3N^+ B) COO^- , COO^- , H_3N^+ C) COOH, COOH, H_3N^+ D) COOH, COO^- , H_3N^+ E) COOH, COO^- , H_2N

11) Which one is derived from aliphatic amino acid?

A) Dopa

- B) Epinephrine
- C) Aspartame
- D) Norepinephrine
- C) Histamine

12) Which of the following amino acids contain sulfur atom in their side chains?
A) Serine
B) Tryptophan
C) Methionine
D) A & B

E) B & C

13) Phenylalanine can be used to synthesize the following amino acid:

- A) Ser
- B) Trp
- C) Thr
- D) Tyr
- E) Orn

14) The following amino acids are hydroxylated in collagen:
A) Pro and Leu
B) Pro and Ile
C) Gly and Pro
D) Pro and Lys

E) Tyr and Lys

15) One of these groups (Derivative-Precursor-Function) is correctly matched:You can choose more than one choice

A) Histamine/ His/ Vasoconstriction

B) y-Carboxy-glutamic acid/ Gln/ Coagulation

C) GABA/ Glu/ Relaxing inhibitory neurotransmitter

D) Serotonin/ Trp/ Sedative effects

E) Thyroxine/ Tyr/ Metabolism

→ Answers:

Q. No.	Ans.	Q. No.	Ans.
1	А	9	В
2	В	10	A
3	С	11	С
4	В	12	С
5	С	13	D
6	В	14	D
7	D	15	C+D+E
8	А		
Done by Abdullah Al-Iaoun			

Done by: Abdullah Al-Jaouni