Information:

R = 8.314 J/mole.K; $k_B = 1.38 \times 10^{-23} \text{ J/K}$; $g = 9.8 \text{ m/s}^2$. $\rho_{\text{water}} = 1000.0 \text{ kg/m}^3 \text{ and } P_{\text{atm}} = 1.013 \times 10^5 \text{ Pa.}$ $1u = 1.66 \times 10^{-27} \text{ kg. N}_A = 6.02 \times 10^{23} \text{ molecules/mole. Note: Some Results Are Rounded.}$

1) A patient is administered (131 I). How long will it take for the observed radioactivity in her body to decrease to one-fourth its original magnitude? Given that (131 I) has half-life ($T_{1/2}$) of 8.1 days

A) 8.1 days

B) 360 days

C) 376.2 days

D) 16.2 days

E) 7.75 days

3) A submarine deep below the surface of the sea is at a gauge pressure of 40 atm. The air inside the submarine is at normal atmospheric pressure. The *net* force (in N) on a flat hull plate 2m by 6m is:

A) 4.86×10^2

B) 4.86

C) 4.86×10^7

D) 4.92

E) 4.92 x 10

4) The linear expansion coefficient for Al is $\alpha = 2.2 \times 10^{-5} \text{ K}^{-1}$. What is the increase in volume of a block of 1 m³ of Al if the temperature of the block is raised by 10 °C?

A) 220 cm³

B) 440 cm³

C) 22 cm³

D) 660 cm³

E) 66 cm³

5) What volume fraction of a cube of density ($\rho = 0.50 \text{ g/cm}^3$) would sink under the surface of a liquid of density ($\rho_0 = 1.0 \text{ g/cm}^3$)?

A) 0.80

B) 0.67

C) 0.33

D) 0.50

E) 0.20

6) A 63-kg researcher absorbs 2.6×10^8 neutrons in a work day. The energy of each neutron is 6.5 MeV. The quality factor (QF) for fast neutrons is 10. The biologically equivalent dosage of the radiation, in mrem (mrem = 10^{-3} rem), is closest to (Note: 1 rad = 0.01 J/kg and 1ev = 1.6×10^{-19} J)

A) 43

B) 1.3

C)

D) 13

E) 4.3

7) A man pulls a box weighting 40 N a distance of 10 m across the floor at constant speed. How much work (in J) does he do if the coefficient of kinetic friction is 0.20?

A) 80

B) -40

C) 0.0

D) 40

E) -80

8) The gravitational force exerted on a solid object, in air, is 4.0 N (Figure a). When the object is suspended from a spring scale and submerged in water, the scale reads 2.0 N (Figure b). Find the density of the object (in kg/m³). Assume density of water $\rho = 1000.0 \text{ kg/m}^3$.

A) 4000

B) 2000

C) 5000

D) 1000

E) 1500

A) 13.3 kP	B) 4.0 kP	C) 13.1 kP	D) 9.3 kP	E) 16.6 kP	
				en the ratio of the <i>rms</i> veloci $H_2 = 2.016$ u and for $CO_2 = 4$	
A) 21.8	B) 0.21	C) 4.0	D) 0.05	E) 4.67	
	following state			at b in the horizontal section socity v , pressure P , and flow	
A) v. D) P	$P_a < v_b$. B) $P_a = P_b$. E) $P_a = P_b$.	$P_a > P_b$ C) $F_a > Q_b$ (Q is the	$P_a < P_b$. flow rate).	A_a ()	A_b
These gamma	a rays are widel		cancer. What is	e) into ⁶⁰ Ni, which then prom the mass (in gram) of a 100	
A) 0.118		B) 0.441	C) 0.8	32	
D) 0.245		E) 0.0147	Ċ	Y	
			4	7	
				rith initial speed 25 m/s and an m/s) of the object when rea	
A) 12	B) 24	C) 6	D) 0	E) -12	
laboratory teo rays is 1.0. Tl	chnician absorb ne ratio of the e	s 2.1 mJ of 0.7 M equivalent dosage	eV gamma rays received by the	exposure to radiation is 26 min a work day. The quality factorization to the maximum pev = $1.6 \times 10^{-19} \text{ J}$	actor (QF) for gamma permissible equivalent
A) 0.18	B) 0.14	C) 0.17	D) 0.13	E) 0.15	
				f 9200 neutrons per second. osest to: Hint (nCi = 10 ⁻⁹ Ci	
decays/sec.)	7				

16) The level of the fluid with density $\rho_s = 1000 \text{ kg/m}^3$ in the left arm of the manometer is 0.2 m above the manometer fluid of density $\rho_f = 800 \text{ kg/m}^3$ in the right arm. Which of the following relations is true? (Use ; $g = 10 \text{ m/s}^2$)

0.5 m

A.
$$P_G = P_{atm}$$
.

B. P_G is 2000 Pa higher than P_{atm} .

C. P_G is 2000 Pa lower than P_{atm} .

D. P_G is 4000 Pa higher than P_{atm} .

E. P_G is 6000 Pa higher than P_{atm}

17) The radioactive nuclide 60 Co is widely used in medical applications. It undergoes beta decay, and the energy of the decay process is 2.82 MeV per decay event. The half-life of this nucleus is 272 days. Suppose that a patient is given a dose of 6.9 microCurie of 60 Co. If all of this material decayed while in the patient's body, what would be the total energy (in J) deposited there? Hint: $(1\text{Ci} = 3.70 \times 10^{10} \text{ decays/sec.})$ and $1\text{ev} = 1.6 \times 10^{-19} \text{ J}$.

- A) 3.9
- B) 11.0
- C) 14.0
- D) 8.63×101^{12}
- E) 4.15×10^6

18) A collapsible plastic bag contains glucose. If the average gauge pressure in the vein is 1.33×10^3 Pa, what must be the minimum height h (in m) of the bag in order to infuse glucose into the vein? Assume density of the solution is equal $1.02 \rho_{water}$.

A) 0.133

B) 0.113

C) 0.150

D) 0.752

E) 0.333

19. Oxygenation of the deep waters in a sea occurs in early winter due to:

- a. Diffusion of air molecules through water.
- b. Water mixing resulting from the decrease in density of water at lower as the temp decreases.
- c. Water mixing resulting from the increase in density of water at lower as the temp decreases.
- d. The lower density of ice relative to water.
- e. Water mixing resulting from turbulence and the see waves in early winter.

·

		al gas has a ten erature (in °C)		C. If the volume	is held constar	nt and the pressure is
a. 174	b . 323	c. 50	d. 596	e. 25	5	
should	the water p	pressure at the		pp of a 10 m high ling be if the spe 9.8 m/s ²)	_	
a. 1	.0 bars	b. 2.0 bars	c. 0.5 bars	d. 3.0 bars	e. 0.3 ba	rs A
22. The tem	perature of	an object is 80	°F. What is its a	absolute tempera	ture on the Kel	vin scale?
a. 30	00 K.	b. 335 K.	c. 359 K.	d. 475 K.	e. 400 K.	
cable at	its upper entition its the What is the N		tal force of mag	on by a pin (P) at nitude F = 75 N a		
cord wh	nich is attacl	M_2 ($M_1 = M_2$) hed to the ceithe ratio T/N	are connected by ling of an elevat c.l d. 3	y a light inextens or that is acceler	ible ating	T (M ₁) N (M ₂)
force is apposite at the control of	between ma	asses M and 2N . If M = 1 kg, b. 0.8 N	A causes both m	face is zero, and asses to move to ional force exerte	gether when th	
N) acts of the kinet	on the bloc tic energies	k between A a of the block at	nd B, as shown. A and B are 5.	point A to point Points A and B a 0 J and 4.0 J, res as the block mo	are 1.5 m apart pectively, how	. If much
a3.3 d1.3		b. +1.3 J e. +4.6 J	c. +3.3 J	Δ -	40° □	R

27) Consider the model shown in Figure (b) for a person bending forward to lift a 100-N object. The spine and upper body are represented as a uniform horizontal rod of weight 400 N and length L, pivoted at the base of the spine. The erector spinal muscle, attached at a point 2L/3 a way from the pivot, maintains the position of the back. The angle between the spine and this muscle is 12 degrees. The tension T (in N) in the back muscle is.

A) 460

B) 2117

C) 0

D) 722

E) 2164

28) The horizontal component of the force $R (\equiv R_x)$ exerted by the pivot (sacrum) along the spine (in N)?

A) 2117

B) 450

C) 0

D) 2164

E) 1667