WILEY

Chapter 2 Elements, Compounds, and the Periodic Table

Chemistry, 7th Edition International Student Version Brady/Jespersen/Hyslop

Periodic Table Modern Periodic Table

- Arranged by increasing atomic number (Z):
- Rows called periods
- Columns called groups or families
 - Identified by numbers
 - 1 18 standard international
 - 1A 8A longer columns and 1B 8B shorter columns

Modern Periodic Table

with group labels and chemical families identified

Alkali metals (except	H)	A	Ikaline earth netals				Atc nur 1 H 1.00794	omic nber			Gro	up des	ignatior	١		Halog	ens	8A (18)	Noble gases
1	1 H 1.008	2A (2)	/				Ato	omic					3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	2 He 4.003	
2	3 Li 6.941	4 Be 9.012						ass	8B				5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18	
3	11 Na 22.99	12 Mg 24.31	3B (3)	4B (4)	5B (5)	6B (6)	7B / (7)	(8)	(9)	(10)	1B (11)	2B (12)	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95	
Periods 5	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.64	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc [98]	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29	
6	55 Cs 132.91	56 Ba 137.33	57 La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 r 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po [209]	85 At [210]	86 Rn [222]	
7	87 Fr [223]	88 Ra [226]	89 Ac [227]	104 Rf [267]	105 Db [268]	106 Sg [271]	107 Bh [272]	108 Hs [270]	109 Mt [276]	110 Ds [281]	111 Rg [280]	112 Cn [285]	113 Uut [284]	114 Fl [289]	115 Uup [288]	116 Lv [293]	117 Uus [294]	118 Uuo [294]	
	Lanthanides				58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm [145]	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
Actinides			90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np [237]	94 Pu [244]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	103 Lr [262]			

Note: Placement of elements 58 – 71 and 90 – 103 saves space

- A groups—Longer columns
- Alkali Metals
 - **1A** = first group
 - All are metals except for H
 - Tend to form +1 ions

- A groups—Longer columns
- Alkaline Earth Metals
 - 2A = second group
 - Tend to form +2 ions

A groups—Longer columns

Halogens

- **7A** = next to last group on right
- Form diatomic molecules in elemental state
 - 2 gases F₂, Cl₂
 - I liquid Br₂
 - 2 solids I₂, At₂
- Form –1 ions with alkali metals—salts (e.g. NaF, NaCl, NaBr, and NaI)

A groups—Longer columns Noble Gases

- **8A** = last group on right
- Inert—very unreactive
- Only heavier elements of group react and then very limited
- Don't form charged ions
- Monatomic gases (e.g., He, Ne, Ar)

Transition Elements B groups—shorter columns

- All are metals
- In center of table
- Begin in fourth row
- Tend to form ions with several different charges

e.g.,

- Fe²⁺ and Fe³⁺
- Cu⁺ and Cu²⁺
- Mn²⁺, Mn³⁺, Mn⁴⁺, Mn⁵⁺, Mn⁶⁺, and Mn⁷⁺

Metals, Nonmetals, or Metalloids

- Elements break down into three broad categories
- Organized by regions of periodic table
 Metals
 - Left-hand side
 - Sodium, lead, iron, gold

Nonmetals

- Upper right-hand corner
- Oxygen, nitrogen, chlorine

Metalloids

- Diagonal line between metals and nonmetals
- Boron to astatine

Metals, Nonmetals, or Metalloids

	1A (1)	_			Me	etals		Nonm	etals		Meta	lloids						8A (18)		
1	н	2A (2)											3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	He		
2	Li	Be							00				В	С	N	0	F	Ne		
3	Na	Mg	3B (3)	4B (4)	5B (5)	6B (6)	7B (7)	(8)	(9)	(10)	1B (11)	2B (12)	AI	Si	Ρ	S	СІ	Ar		
Periods	к	Са	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe		
6	Cs	Ва	*La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn		
7	Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo		
												T		1						
							* Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
							-			1		1	*							
							† Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Classify the following three elements as a metal, non-metal, or metalloid:
 - silicon (Si), vanadium (V), bromine (Br)
- A. nonmetal, metal, nonmetal, respectively
- B. metal, metalloid, nonmetal, respectively
- C. nonmetal, metal, metalloid, respectively
- D. metalloid, metal, metalloid, respectively
- E. None of these are correct

Strontium (Sr) is a _____, ruthenium (Ru) is a _____, and iodine (I) is a _____.

A. alkali metal, transition metal, halogen

- B. transition metal, alkaline earth metal, halogen
- C. alkaline earth metal, transition metal, halogen
- D. transition metal, alkali metal, noble gas
- E. alkali metal, actinide, halogen

Which of the following statements is correct?

- A. Cu is a representative transition element
- B. Na is an alkaline earth metal
- C. Al is a metalloid in group 3A
- D. F is a representative halogen
- E. None of these are correct

Molecules and Chemical Formulas

- Atoms combine into compounds
- Useful to visualize atoms, compounds, and molecules
- Atoms represented by spheres
- Different atoms have different colors
- Standard scheme is represented on the right

Molecules

- Atoms combine to form more complex substances
- Discrete particles
- Each composed of two or more atoms

e.g.,

- Molecular oxygen, O₂
- Carbon dioxide, CO₂
- Ammonia, NH₃
- Sucrose, C₁₂H₂₂O₁₁

Depicting Molecules

- Want to show:
 - Order in which atoms are attached to each other
 - 3-dimensional shape of molecule
- Three ways of visualizing molecules:
 - 1. Structural formula
 - 2. Ball-and-stick model
 - 3. Space filling model

Chemical Reactions

- When one or more substances react to form one or more new substances
- **e.g.,** Reaction of methane, CH₄, with oxygen, O₂, to form carbon dioxide, CO₂, and water, H₂O. Reactants = CH₄ and O₂ Products = CO₂ and H₂O
- How to depict?
 - Words too long
 - Pictures too awkward

Balanced Chemical Equation

Subscripts

- Define identity of substances
- Must not change when equation is balanced

Coefficients

- Number in front of formulas
- Indicate number of molecules of each type
- Adjusted so number of each type of atom is same on both sides of arrow
- Can change

Balanced Chemical Equations

- How do you determine if an equation is balanced?
 - Count atoms
 - Same number of each type on both sides of equation?

Products

- If yes, then balanced
- If no, then unbalanced

Ex. $2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$

Reactants

- $2 \times 4 = 8 C$ $8 \times 1 = 8 C$
- $2 \times 10 = 20 \text{ H}$ $10 \times 2 = 20 \text{ H}$
- $13 \times 2 = 26 \text{ O} (8 \times 2) + (10 \times 1) = 26 \text{ O}$

Learning Check $Fe(OH)_3 + 2 HNO_3 \longrightarrow Fe(NO_3)_3 + 2 H_2O_3$ Reactants **Products** Fe $3 + (2 \times 3) = 9$ 0 $(3\times3) + 2 = 11$ 3 + 2 = **5** $(2 \times 2) = 4$ Η Ν 2 3

- Not balanced
- Only Fe has same number of atoms on either side of arrow.

How many atoms of each element appear on each side of the arrow in the following equation?

 $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O_2$ **Products** Reactants **N** $(4 \times 1) = 4$ $(2 \times 2) = 4$ **O** $(3 \times 2) = 6$ $(6 \times 1) = 6$ **H** $(4 \times 3) = 12$ $(6 \times 2) = 12$

Count the number of atoms of each element on both sides of the arrow to determine whether the following equation is balanced. $2(NH_4)_3PO_4 + 3Ba(C_2H_3O_2)_2 \rightarrow Ba_3(PO_4)_2 + 6NH_4C_2H_3O_2$

Ions and Ionic Compounds Ions

- Transfer of one or more electrons from one atom to another
- Form electrically charged particles

Ionic compound

- Compound composed of ions
- Formed from metal and nonmetal
- Infinite array of alternating Na⁺ and Cl⁻ ions

Formula unit

- Smallest neutral unit of ionic compound
- Smallest whole-number ratio of ions

Formation of Ionic Compounds Metal + Non-metal \longrightarrow ionic compound $2Na(s) + Cl_2(g) \longrightarrow 2NaCl(s)$

Na + CI \longrightarrow Na⁺ + CI⁻ \longrightarrow NaCI(s) e⁻

Ionic Compounds

Cations

- Positively charged ions
- Formed from metals
- Atoms lose electrons
- **e.g., Na** has 11 *e*⁻ and 11 *p*

Anions

Na+ has 10 *e*⁻ and 11 *p*

CI⁻ has 18 *e*⁻ and 17 *p*

- Negatively charged ions
- Formed from non-metals
- Atoms gain electrons
- e.g., CI has 17 *e*[−] and 17 *p*

Ions of Representative Elements Can use periodic table to predict ion charges

TABLE	2.2 lons	Formed fro	om the Rep	resentative	Elements	
			Group N	lumber		
1A	2A	3A	4A	5A	6A	7A
H^+						
Li ⁺	Be ²⁺		C^{4-}	N ³⁻	O^{2-}	F^-
Na ⁺	Mg^{2+}	Al^{3+}	Si^{4-}	P^{3-}	S^{2-}	Cl ⁻
K^+	Ca^{2+}				Se ^{2–}	Br^-
Rb^+	Sr^{2+}				Te ^{2–}	I^-
Cs^+	Ba ²⁺					

When we use North American numbering of groups: Cation positive charge = group number

Ions of Representative Elements

Noble gases are especially stable

Nonmetals

- Negative (-) charge on anion = number of spaces you have to move to right to get to noble gas
- Expected charge on O
 - Move two spaces to right
 - O²⁻
- What is expected charge on N?
 - Move three spaces to right
 - N³ Brady/Jespersen/Hyslop, Chemistry7E, Copyright © 2015 John Wiley & Sons, Inc. All Rights Reserved

Rules For Writing Ionic Formulas

- 1. Cation given first in formula
- **2. Subscripts** in formula must produce electrically neutral formula unit
- **3. Subscripts** must be smallest whole numbers possible
 - Divide by 2 if all subscripts are even
 - May have to repeat several times
- **4. Charges** on ions not included in finished formula unit of substance
 - If no subscript, then 1 implied

Determining Ionic Formulas

- **Example:** Formula of ionic compound formed when magnesium reacts with oxygen
 - Mg is group 2A
 - Forms +2 ion or Mg²⁺
 - O is group 6A
 - Forms –2 ion or O^{2–}
 - To get electrically neutral particle need
 - 1:1 ratio of Mg²⁺ and O²⁻
 - Formula: MgO

Determining Ionic Formulas

"Criss-cross" rule

- Make magnitude of charge on one ion into subscript for other
- When doing this, make sure that subscripts are reduced to lowest whole number.

Example: What is the formula of ionic compound formed between aluminum and oxygen ions?

Which of the following is the correct formula for the formula unit composed of potassium and oxygen ions?

- A. KO
- B. KO₂
- C. K₂O
- D. P_2O_3

Which of the following is the correct formula for the formula unit composed of Fe³⁺ and sulfide ions?

- A. FeS
- B. Fe_3S_2
- C. FeS₃
- D. Fe_2S_3

Which of the following is the correct formula for the formula unit composed of ions of magnesium and nitrogen?

- A. MgN
- B. Mg_3N_2
- C. Mn_3N_2
- D. N_3Mg_2
- E. Mn_2N_3

Cations of Transition Metals Transition metals

- Center (shorter) region of periodic table
- Much less reactive than group 1A and 2A
- Still transfer electrons to nonmetals to form ionic compounds
- number of electrons transferred less clear
- Form more than one positive ion
- Can form more than one compound with same non-metal

e.g., Fe + Cl

FeCl₂ and FeCl₃

Cations of Post-transition Metals Post-transition metals

- Nine metals Ga, In, Sn, Tl, Pb, Bi, Uut, Uuq, Uub
- After transition metals and before metalloids
- Two very important ones tin (Sn) and lead (Pb)
 - Both have two possible oxidation states
 - Both form two compounds with same nonmetal
- e.g., Ionic compounds of tin and oxygen are
 - SnO and SnO₂
- Bismuth
 - Only has +3 charge
 - Bi³⁺

Transition metals

Ions of Some Transition Metals and Post-transition Metals

TABLE 2.3 Ions of Some Transition Metals and Post-transition Metals

Transition Metals		Transition Metals	
Titanium	Ti ²⁺ , Ti ³⁺ , Ti ⁴⁺	Silver	Ag^+
Chromium	Cr^{2+}, Cr^{3+}	Cadmium	Cd^{2+}
Manganese	Mn^{2+}, Mn^{3+}	Gold	Au^+ , Au^{3+}
Iron	Fe ²⁺ , Fe ³⁺	Mercury	Hg_2^{2+}, Hg^{2+}
Cobalt	Co^{2+}, Co^{3+}	Post-transition Metals	
Nickel	Ni ²⁺	Tin	Sn ²⁺ , Sn ⁴⁺
Copper	Cu ⁺ , Cu ²⁺	Lead	Pb^{2+}, Pb^{4+}
Zinc	Zn^{2+}	Bismuth	Bi ³⁺

Compounds with Polyatomic Ions Binary compounds

Compounds formed from two different elements

Polyatomic ions

- Ions composed of two or more atoms linked by molecular bonds
- If ions are negative, they have too many electrons
- If ions are positive, they have too few electrons
- Formulas for ionic compounds containing polyatomic ions
 - Follow same rules as ionic compounds
 - Polyatomic ions are expressed in parentheses

Polyatomic Ions

TABLE 2.4	Formulas and Names of Some Polyatomic	c lons	
lon	Name (Alternate name in parentheses)	lon	Name (Alternate name in parentheses)
$\mathrm{NH_4}^+$	Ammonium ion	CO ₃ ²⁻	Carbonate ion
${\rm Hg_{2}}^{2+}$	Mercury(I) ion	HCO ₃ ⁻	Hydrogen carbonate ion (bicarbonate ion) ^b
H_3O^+	Hydronium ion ^a	SO3 ²⁻	Sulfite ion
OH-	Hydroxide ion	HSO ₃ ⁻	Hydrogen sulfite ion (bisulfite ion) ^b
CN^{-}	Cyanide ion	SO4 ²⁻	Sulfate ion
NO_2^-	Nitrite ion	HSO ₄ ⁻	Hydrogen sulfate ion (bisulfate ion) ^b
NO_3^-	Nitrate ion	SCN-	Thiocyanate ion
ClO^{-} or OCl^{-}	Hypochlorite ion	S ₂ O ₃ ²⁻	Thiosulfate ion
ClO_2^-	Chlorite ion	$\operatorname{CrO_4^{2-}}$	Chromate ion
ClO_3^-	Chlorate ion	$Cr_2O_7^{2-}$	Dichromate ion
ClO_4^-	Perchlorate ion	PO_4^{3-}	Phosphate ion
$\mathrm{MnO_4}^-$	Permanganate ion	HPO_4^{2-}	Monohydrogen phosphate ion
$C_2H_3O_2^{-}$	Acetate ion	$H_2PO_4^-$	Dihydrogen phosphate ion
$C_2 O_4^{2-}$	Oxalate ion		

^aYou will only encounter this ion in aqueous solutions.

^bYou will often see and hear the alternate names for these ions.

Learning Check

- **Ex.** What is the formula of the ionic compound formed between ammonium and phosphate ions?
 - Ammonium = NH_4^+
 - Phosphate = PO_4^{3-} (NH₄)⁺ (PO₄)³⁻ (NH₄)₃PO₄
- **Ex.** Between strontium ion and nitrate ion?
 - Strontium = Sr²⁺
 - Nitrate = NO_3^{2-} Sr²⁺ (NO₃)⁻

Nomenclature (Naming)

- IUPAC system to standardize name of chemical compounds
- One system so that anyone can reconstruct formula from name
- We will look at naming ionic compounds of
 - Representative metals
 - Transition metals
 - Monatomic ions
 - Polyatomic ions
 - Hydrates

Naming Ionic Compounds Cations:

- Metal that forms only one positive ion
 - Cation name = English name for metal
 - Na⁺ sodium
 - Ca²⁺ calcium
- Metal that forms more than one positive ion
- Use Stock System
 - Cation name = English name followed by numerical value of charge written as Roman numeral in parentheses (no spaces)
 - Transition metal
 - Cr²⁺ chromium(II) Cr³⁺ chromium(III)

Naming Ionic Compounds

Anions:

 Monatomic anions named by adding "-*ide*" suffix to stem name for element

TAB	LE 2.5 Mo	natomi	c Negative	lons					
H^{-}	Hydride	C ⁴⁻	Carbide	N ³⁻	Nitride	O ²⁻	Oxide	F^{-}	Fluoride
		Si ⁴⁻	Silicide	P^{3-}	Phosphide	S ²⁻	Sulfide	Cl^{-}	Chloride
				As ^{3–}	Arsenide	Se ²⁻	Selenide	Br^-	Bromide
				Te ²⁻	Telluride	I^-	Iodide		

Polyatomic ions use names in Table 2.4

Learning Check: Name The Following

- K₂O potassium oxide
- NH₄ClO₃
- $Mg(C_2H_3O_2)_2$
- Cr_2O_3
- ZnBr₂

ammonium oxide ammonium chlorate magnesium acetate chromium(III) oxide zinc bromide

Learning Check: Determine The Formula

- Calcium hydroxide
 - Ca(OH)₂
- Manganese(II) bromide
 - MnBr₂
- Ammonium phosphate
 - (NH₄)₃PO₄
- Mercury(I) nitride
 - $(Hg_2)_3N_2$

Which is the correct name for Cu₂S?

- A. copper sulfide
- B. copper(II) sulfide
- C. copper(II) sulfate
- D. copper(I) sulfide
- E. copper(I) sulfite

Which is the correct formula for ammonium sulfite?

- A. NH_4SO_3
- B. $(NH_4)_2SO_3$
- C. $(NH_4)_2SO_4$
- D. NH₄S
- E. $(NH_4)_2S$

Hydrates

- Crystals that contain water molecules
- **e.g.**, Plaster: CaSO₄·2H₂O calcium sulfate dihydrate
 - Water is not tightly held
- Dehydration
 - Removal of water by heating
 - Remaining solid is *anhydrous* (without water)

Naming Hydrates

- Ionic compounds
 - Crystals contain water molecules
 - Fixed proportions relative to ionic substance
- Naming
 - Name ionic compound
 - Give number of water molecules in formula using Greek prefixes

mono-	= 1	hexa- = 6
di-	= 2	hepta- = 7
tri-	= 3	octa- = 8
tetra-	= 4	nona- = 9
penta-	= 5	deca- = 10

Learning Check: Naming Hydrates

- $CaSO_4 \cdot 2H_2O$
 - calcium sulfate dihydrate
- $CoCl_2 \cdot 6H_2O$
 - cobalt(II) chloride hexahydrate
- FeI₃·3H₂O
 - iron(III) iodide trihydrate

What is the correct formula for copper(II) sulfate pentahydrate?

- A. $CuSO_4 \cdot 6H_2O$
- B. $CuSO_3 \cdot 5H_2O$
- C. $CoSO_4 \cdot 4H_2O$
- D. $CoSO_3 \cdot 5H_2O$
- E. $CuSO_4 \cdot 5H_2O$

What is the correct name for $Fe(NO_3)_3$ $^{-9}H_2O$

- A. iron nitrate nonahydrate
- B. iron(III) nitrate nonahydrate
- C. Ferium (III) nitrate decahydrate
- D. iron(III) nitrite nonahydrate
- E. iron(III) nitrate heptahydrate

Molecules vs. Ionic Compounds Molecules

- Discrete unit
 - Water = two hydrogen atoms bonded to one oxygen atom

Ionic Compounds

- Ions packed as close as possible to each other
 - Sodium chloride: Six anions surround each cation; six cations surround each anion
 - No one ion "belongs" to another

Brady/Jespersen/Hyslop, Chemistry7E, Copyright © 2015 John Wiley & Sons, Inc. All Rights Reserved

(a)

Hydrogen

(b)

Molecular Compounds

- Formed when nonmetals combine
 - $C + O_2 \longrightarrow CO_2$ $2H_2 + O_2 \longrightarrow 2H_2O$
- Millions of compounds can form from a few non-metals
- Organic chemistry and biochemistry
 - Deal with chemistry of carbon + hydrogen, nitrogen, and oxygen
- A few compounds have only two atoms
 - Diatomics: HCl, CO, HF, NO
- Most molecules are far more complex
 - Sucrose $(C_{12}H_{22}O_{11})$ urea (CON_2H_4)

Nomenclature of Molecular Compounds

Goal is a name that translates clearly into molecular formula

Naming Binary Molecular Compounds

- Which two elements present?
- How many of each?

Format:

- First element in formula
 - Use English name

Second element

- Use stem and append suffix –ide
- Use Greek number prefixes to specify how many atoms of each element

Naming Binary Molecular Compounds

- 1. hydrogen chloride
- 1 H 1 Cl HCl

PCI

Se₃N₂

- 2. phosphorous pentachloride
- 1 P 5Cl 3. triselenium dinitride
- Mono always omitted on first element
- Often omitted on second element unless more than one combination of same two elements
 e.g., Carbon monoxide CO Carbon dioxide CO₂

3 Se 2N

 When prefix ends in vowel similar to start of element name, drop prefix vowel

Learning Check: Name Each Format:

- Number prefix + first element name
- Number prefix + stem + -ide for second element
- $AsF_3 = arsenic trifluoride$
- HBr = hydrogen bromide
- N_2O_4 = dinitrogen tetroxide
- N_2O_5 = dinitrogen pentoxide
- CO = carbon monoxide
- CO_2 = carbon dioxide

Which is the correct formula for nitrogen triiodide?

- A. N_3I
- B. NI₃
- C. NIO₃
- D. N(IO₃)₃
- E. none of the above

Which is the correct name for P_4O_{10} ?

- A. phosphorus oxide
- B. phosphorous decoxide
- C. tetraphosphorus decoxide
- D. tetraphosphorus oxide
- E. decoxygen tetraphosphide

Which is the correct formula for disulfur decafluoride?

A. Su_2F_{10} B. SF_5 C. S_2F_{10} D. S_3F_{10} E. S_2F_4

Exceptions to Naming Binary Molecules Binary compounds of nonmetals + hydrogen

- No prefixes to be used
- Get number of hydrogens for each nonmetal from periodic table
- Hydrogen sulfide = H₂S
- Hydrogen telluride = H₂Te

Molecules with Common Names

- Some molecules have names that predate IUPAC systematic names
- Water H_2O Sucrose $C_{12}H_{22}O_{11}$
- Ammonia NH_3 Phosphine PH_3

Summary of Naming

