WILEY

Chapter 2

Elements, Compounds, and the Periodic Table

Chemistry, $7^{\text {th }}$ Edition International Student Version Brady/Jespersen/Hyslop

Periodic Table

Modern Periodic Table

- Arranged by increasing atomic number (Z):
- Rows called periods
- Columns called groups or families
- Identified by numbers
- 1-18 standard international
- $1 A-8 A$ longer columns and $1 B-8 B$ shorter columns

Modern Periodic Table

with group labels and chemical families identified

Note: Placement of elements 58 - 71 and 90 - 103 saves space

Representative/Main Group Elements

A groups-Longer columns

- Alkali Metals
- $\mathbf{1 A}$ = first group
- All are metals except for H
- Tend to form +1 ions

Representative/Main Group Elements

A groups-Longer columns
 - Alkaline Earth Metals

- 2A = second group
- Tend to form +2 ions

Representative/Main Group Elements

A groups-Longer columns
 - Halogens

- 7A = next to last group on right
- Form diatomic molecules in elemental state
- 2 gases - $\mathrm{F}_{2}, \mathrm{Cl}_{2}$
- 1 liquid - Br_{2}
- 2 solids $-\mathrm{I}_{2}$, At_{2}
- Form -1 ions with alkali metals-salts (e.g. $\mathrm{NaF}, \mathrm{NaCl}, \mathrm{NaBr}$, and NaI)

Representative/Main Group Elements

A groups-Longer columns
 - Noble Gases

- 8A = last group on right
- Inert-very unreactive
- Only heavier elements of group react and then very limited
- Don't form charged ions
- Monatomic gases (e.g., He, Ne, Ar)

Transition Elements

B groups-shorter columns

- All are metals
- In center of table
- Begin in fourth row
- Tend to form ions with several different charges
e.g.,
- Fe^{2+} and Fe^{3+}
- Cu^{+}and Cu^{2+}
- $\mathrm{Mn}^{2+}, \mathrm{Mn}^{3+}, \mathrm{Mn}^{4+}, \mathrm{Mn}^{5+}, \mathrm{Mn}^{6+}$, and Mn^{7+}

Metals, Nonmetals, or Metalloids

- Elements break down into three broad categories
- Organized by regions of periodic table Metals
- Left-hand side
- Sodium, lead, iron, gold Nonmetals
- Upper right-hand corner
- Oxygen, nitrogen, chlorine

Metalloids

- Diagonal line between metals and nonmetals
- Boron to astatine

Metals, Nonmetals, or Metalloids

Your Turn!

Classify the following three elements as a metal, non-metal, or metalloid: silicon (Si), vanadium (V), bromine (Br)
A. nonmetal, metal, nonmetal, respectively B. metal, metalloid, nonmetal, respectively C. nonmetal, metal, metalloid, respectively D. metalloid, metal, metalloid, respectively E. None of these are correct

Your Turn!

Strontium (Sr) is a _ ruthenium (Ru) is a __, and iodine (I) is a -

A. alkali metal, transition metal, halogen
B. transition metal, alkaline earth metal, halogen C. alkaline earth metal, transition metal, halogen D. transition metal, alkali metal, noble gas
E. alkali metal, actinide, halogen

Your Turn!

Which of the following statements is correct?
A. Cu is a representative transition element
B. Na is an alkaline earth metal
C. Al is a metalloid in group 3A
D. F is a representative halogen
E. None of these are correct

Molecules and Chemical Formulas

- Atoms combine into compounds
- Useful to visualize atoms, compounds, and molecules
- Atoms represented by spheres
- Different atoms have different colors
- Standard scheme is represented on the right

Carbon	C	
Hydrogen	H	\bigcirc
Nitrogen	N	
Oxygen	0	
Phosphorus	P	
Sulfur	S	
Fluorine	F	
Chlorine	Cl	
Bromine	Br	
lodine	I	
Silicon	Si	
Boron	B	

Molecules

- Atoms combine to form more complex substances
- Discrete particles
- Each composed of two or more atoms
e.g.,
- Molecular oxygen, O_{2}
- Carbon dioxide, CO_{2}
- Ammonia, NH_{3}
- Sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

Depicting Molecules

- Want to show:
- Order in which atoms are attached to each other
- 3-dimensional shape of molecule
- Three ways of visualizing molecules:

1. Structural formula
2. Ball-and-stick model
3. Space filling model

CH_{4}
methane

Chemical Reactions

- When one or more
substances react to form one
or more new substances
e.g., Reaction of methane, CH_{4}, with oxygen, O_{2}, to form carbon dioxide, CO_{2}, and water, $\mathrm{H}_{2} \mathrm{O}$. Reactants $=\mathrm{CH}_{4}$ and O_{2} Products $=\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
- How to depict?
- Words too long
- Pictures too awkward

Balanced Chemical Equation

Ex. $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$

Subscripts

- Define identity of substances
- Must not change when equation is balanced

Balanced Chemical Equation

Ex. $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
2 molecules of $\mathrm{C}_{4} \mathrm{H}_{10} \quad 13$ molecules of O_{2}

10 molecules
of $\mathrm{C}_{4} \mathrm{H}_{10}$

Coefficients

- Number in front of formulas
- Indicate number of molecules of each type
- Adjusted so number of each type of atom is same on both sides of arrow
- Can change

Balanced Chemical Equations

- How do you determine if an equation is balanced?
- Count atoms
- Same number of each type on both sides of equation?
- If yes, then balanced
- If no, then unbalanced

Ex. $\mathbf{2 C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}+\mathbf{1 3 O}_{\mathbf{2}} \longrightarrow \mathbf{8 C O} \mathbf{2} \mathbf{+ 1 0 \mathbf { H } _ { \mathbf { 2 } } \mathbf { O }}$
Reactants
Products
$2 \times 4=8 \mathrm{C}$
$8 \times 1=8 \mathrm{C}$
$2 \times 10=20 \mathrm{H}$
$10 \times 2=20 \mathrm{H}$
$13 \times 2=260$
$(8 \times 2)+(10 \times 1)=260$

Learning Check

$\mathrm{Fe}(\mathrm{OH})_{3}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O}$

Reactants
 Products

Fe
1

$$
\begin{array}{cc}
\mathbf{O} & 3+(2 \times 3)=\mathbf{9} \\
\mathbf{H} & 3+2=\mathbf{5} \\
\mathbf{N} & \mathbf{2}
\end{array}
$$

$$
(3 \times 3)+2=11
$$

$$
(2 \times 2)=4
$$

$$
3
$$

- Not balanced
- Only Fe has same number of atoms on either side of arrow.

Your Turn!

How many atoms of each element appear on each side of the arrow in the following equation?

$\mathbf{4 N H} \mathbf{3}+\mathbf{3} \mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{2 N} \mathbf{2}+\mathbf{6} \mathrm{H}_{\mathbf{2}} \mathbf{O}$

Reactants Products

N
$(4 \times 1)=4$
$(2 \times 2)=4$
$0(3 \times 2)=6$
$(6 \times 1)=6$
H $(4 \times 3)=12$
$(6 \times 2)=12$

Your Turn!

Count the number of atoms of each element on both sides of the arrow to determine whether the following equation is balanced. $2\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}+3 \mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Reactants
N $(2 \times 3)=6$
H $(2 \times 3 \times 4)+(3 \times 3 \times 2)=42$
O $(2 \times 4)+(3 \times 2 \times 2)=20$
P $\quad(2 \times 1)=2$
Ba $(3 \times 1)=3$

Products

$(6 \times 1)=6$
$(6 \times 4)+(6 \times 3)=42$
$(2 \times 4)+(6 \times 2)=20$
$(2 \times 1)=2$
$(3 \times 1)=3$

Ions and Ionic Compounds

Ions

- Transfer of one or more electrons from one atom to another
- Form electrically charged particles

Ionic compound

- Compound composed of ions
- Formed from metal and nonmetal
- Infinite array of alternating Na^{+}and Cl^{-}ions

Formula unit

- Smallest neutral unit of ionic compound
- Smallest whole-number ratio of ions

Formation of Ionic Compounds

Metal + Non-metal \longrightarrow ionic compound $2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s)$

Richard Megna/
Fundamental Photographs

$\mathrm{Na}+\mathrm{Cl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{NaCl}(s)$

Ionic Compounds

Cations

- Positively charged ions
- Formed from metals
- Atoms lose electrons
e.g., $\mathbf{N a}$ has $11 e^{-}$and $11 p$

Anions
$\mathbf{N a}^{+}$has $10 e^{-}$and $11 p$

- Negatively charged ions
- Formed from non-metals
- Atoms gain electrons
e.g., $\mathbf{C l}$ has $17 e^{-}$and $17 p$
$\mathbf{C l}^{-}$has $18 e^{-}$and $17 p$

Ions of Representative Elements Can use periodic table to predict ion charges

TABLE 2.2	lons Formed from the Representative Elements Group Number					
1 A	2 A	3 A	4 A	5 A	6 A	7 A
H^{+}						
Li^{+}	Be^{2+}		C^{4-}	N^{3-}	O^{2-}	F^{-}
Na^{+}	Mg^{2+}	Al^{3+}	Si^{4-}	P^{3-}	S^{2-}	Cl^{-}
K^{+}	Ca^{2+}				Se^{2-}	Br^{-}
Rb^{+}	Sr^{2+}				Te^{2-}	I^{-}
Cs^{+}	Ba^{2+}					

- When we use North American numbering of groups: Cation positive charge = group number

Ions of Representative Elements

- Noble gases are especially stable

Nonmetals

- Negative (-) charge on anion = number of spaces you have to move to right to get to noble gas
- Expected charge on O
- Move two spaces to right
- 0^{2-}
- What is expected charge on N ?
- Move three spaces to right
- N^{3-}

Rules For Writing Ionic Formulas

1. Cation given first in formula
2. Subscripts in formula must produce electrically neutral formula unit
3. Subscripts must be smallest whole numbers possible

- Divide by 2 if all subscripts are even
- May have to repeat several times

4. Charges on ions not included in finished formula unit of substance

- If no subscript, then 1 implied

Determining Ionic Formulas

Example: Formula of ionic compound

 formed when magnesium reacts with oxygen- Mg is group 2A
- Forms +2 ion or Mg²+
- O is group 6A
- Forms -2 ion or O^{2-}
- To get electrically neutral particle need
- $1: 1$ ratio of Mg^{2+} and O^{2-}
- Formula: MgO

Determining Ionic Formulas

"Criss-cross" rule

- Make magnitude of charge on one ion into subscript for other
- When doing this, make sure that subscripts are reduced to lowest whole number.

Example: What is the formula of ionic compound formed between aluminum and oxygen ions?

$$
\mathrm{Al}^{2}+\mathrm{E}^{-} \quad \mathrm{Al}_{2} \mathrm{O}_{3}
$$

Your Turn!

Which of the following is the correct formula for the formula unit composed of potassium and oxygen ions?
A. KO
B. KO_{2}
C. $\mathrm{K}_{2} \mathrm{O}$
D. $\mathrm{P}_{2} \mathrm{O}_{3}$
E. $\mathrm{K}_{2} \mathrm{O}_{2}$

Your Turn!

Which of the following is the correct formula for the formula unit composed of Fe^{3+} and sulfide ions?
A. FeS
B. $\mathrm{Fe}_{3} \mathrm{~S}_{2}$
C. FeS_{3}
D. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
E. $\mathrm{Fe}_{4} \mathrm{~S}_{6}$

Your Turn!

Which of the following is the correct formula for the formula unit composed of ions of magnesium and nitrogen?
A. MgN
B. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
C. $\mathrm{Mn}_{3} \mathrm{~N}_{2}$
D. $\mathrm{N}_{3} \mathrm{Mg}_{2}$
E. $\mathrm{Mn}_{2} \mathrm{~N}_{3}$

Cations of Transition Metals

Transition metals

- Center (shorter) region of periodic table
- Much less reactive than group 1A and 2A
- Still transfer electrons to nonmetals to form ionic compounds
- number of electrons transferred less clear
- Form more than one positive ion
- Can form more than one
compound with same non-metal
e.g., $\mathrm{Fe}+\mathrm{Cl}$
FeCl_{2} and FeCl_{3}

Cations of Post-transition Metals

Post-transition metals

- Nine metals Ga, In, Sn, Tl, Pb, Bi, Uut, Uuq, Uub
- After transition metals and before metalloids
- Two very important ones - tin (Sn) and lead (Pb)
- Both have two possible oxidation states
- Both form two compounds with same nonmetal
e.g., Ionic compounds of tin and oxygen are
- SnO and SnO_{2}
- Bismuth
- Only has +3 charge
- Bi^{3+}

Ions of Some Transition Metals and Post-transition Metals

Transition Metals		Transition Metals	
Titanium	$\mathrm{Ti}^{2+}, \mathrm{Ti}^{3+}, \mathrm{Ti}^{4+}$	Silver	Ag^{+}
Chromium	$\mathrm{Cr}^{2+}, \mathrm{Cr}^{3+}$	Cadmium	Cd^{2+}
Manganese	$\mathrm{Mn}^{2+}, \mathrm{Mn}^{3+}$		$\mathrm{Au}^{+}, \mathrm{Au}^{3+}$
Iron	$\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$	Mercury	$\mathrm{Hg}_{2}{ }^{2+}, \mathrm{Hg}^{2+}$
Cobalt	$\mathrm{Co}^{2+}, \mathrm{Co}^{3+}$	Post-trans	
Nickel	Ni^{2+}	Tin	$\mathrm{Sn}^{2+}, \mathrm{Sn}^{4+}$
Copper	$\mathrm{Cu}^{+}, \mathrm{Cu}^{2+}$	Lead	$\mathrm{Pb}^{2+}, \mathrm{Pb}^{4+}$
Zinc	Zn^{2+}	Bismuth	Bi^{3+}

Compounds with Polyatomic Ions

 Binary compounds- Compounds formed from two different elements Polyatomic ions
- Ions composed of two or more atoms linked by molecular bonds
- If ions are negative, they have too many electrons
- If ions are positive, they have too few electrons
- Formulas for ionic compounds containing polyatomic ions
- Follow same rules as ionic compounds
- Polyatomic ions are expressed in parentheses

Polyatomic Ions

TABLE 2.4 Ion	Formulas and Names of Some Polyatomic lons		
	Name (Alternate name in parentheses)	Ion	Name (Alternate name in parentheses)
NH_{4}^{+}	Ammonium ion	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate ion
$\mathrm{Hg}_{2}{ }^{2+}$	Mercury(I) ion	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate ion (bicarbonate ion) ${ }^{\text {b }}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	Hydronium ion ${ }^{\text {a }}$	$\mathrm{SO}_{3}{ }^{2-}$	Sulfite ion
OH^{-}	Hydroxide ion	$\mathrm{HSO}_{3}{ }^{-}$	Hydrogen sulfite ion (bisulfite ion) ${ }^{\text {b }}$
CN^{-}	Cyanide ion	$\mathrm{SO}_{4}{ }^{2-}$	Sulfate ion
$\mathrm{NO}_{2}{ }^{-}$	Nitrite ion	HSO_{4}^{-}	Hydrogen sulfate ion (bisulfate ion) ${ }^{\text {b }}$
$\mathrm{NO}_{3}{ }^{-}$	Nitrate ion	SCN^{-}	Thiocyanate ion
ClO^{-}or OCl^{-}	Hypochlorite ion	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	Thiosulfate ion
$\mathrm{ClO}_{2}{ }^{-}$	Chlorite ion	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate ion
$\mathrm{ClO}_{3}{ }^{-}$	Chlorate ion	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	Dichromate ion
ClO_{4}^{-}	Perchlorate ion	$\mathrm{PO}_{4}{ }^{3-}$	Phosphate ion
MnO_{4}^{-}	Permanganate ion	$\mathrm{HPO}_{4}{ }^{2-}$	Monohydrogen phosphate ion
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	Acetate ion	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	Dihydrogen phosphate ion
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	Oxalate ion		

[^0]
Learning Check

Ex. What is the formula of the ionic compound formed between ammonium and phosphate ions?

- Ammonium $=\mathrm{NH}_{4}{ }^{+}$
- Phosphate $=\mathrm{PO}_{4}{ }^{3-}$ $\left(\mathrm{NH}_{4}\right)^{+}\left(\mathrm{PO}_{4}\right)^{3-} \quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
Ex. Between strontium ion and nitrate ion?
- Strontium $=\mathrm{Sr}^{2+}$
- Nitrate $=\mathrm{NO}_{3}{ }^{2-}$
$\mathrm{Sr}^{2+}\left(\mathrm{NO}_{3}\right)^{-} \quad \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$

Nomenclature (Naming)

- IUPAC system to standardize name of chemical compounds
- One system so that anyone can reconstruct formula from name
- We will look at naming ionic compounds of
- Representative metals
- Transition metals
- Monatomic ions
- Polyatomic ions
- Hydrates

Naming Ionic Compounds

Cations:

- Metal that forms only one positive ion
- Cation name = English name for metal
- Na^{+}sodium
- Ca^{2+} calcium
- Metal that forms more than one positive ion
- Use Stock System
- Cation name = English name followed by numerical value of charge written as Roman numeral in parentheses (no spaces)
- Transition metal
- Cr^{2+} chromium(II) Cr^{3+} chromium(III)

Naming Ionic Compounds

Anions:

- Monatomic anions named by adding "-ide"suffix to stem name for element

TABLE 2.5 Monatomic Negative Ions

H^{-}	Hydride	C^{4-}	Carbide	N^{3-}	Nitride	O^{2-}	Oxide	F^{-}
Fluoride								
	Si^{4-}	Silicide	P^{3-}	Phosphide	S^{2-}	Sulfide	Cl^{-}	Chloride
			As^{3-}	Arsenide	Se^{2-}	Selenide	Br^{-}	Bromide
			Te^{2-}	Telluride	I^{-}	Iodide		

- Polyatomic ions use names in Table 2.4

Learning Check: Name The Following

- $\mathrm{K}_{2} \mathrm{O}$
- $\mathrm{NH}_{4} \mathrm{ClO}_{3}$
- $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
- $\mathrm{Cr}_{2} \mathrm{O}_{3}$
- ZnBr_{2}
potassium oxide ammonium chlorate
magnesium acetate
chromium(III) oxide
zinc bromide

Learning Check: Determine The Formula

- Calcium hydroxide
- $\mathrm{Ca}(\mathrm{OH})_{2}$
- Manganese(II) bromide
- MnBr_{2}
- Ammonium phosphate - $\left(\mathbf{N H}_{4}\right)_{3} \mathbf{P O}_{4}$
- Mercury(I) nitride
- $\left(\mathrm{Hg}_{2}\right)_{3} \mathrm{~N}_{2}$

Your Turn!

Which is the correct name for $\mathrm{Cu}_{2} \mathrm{~S}$?

A. copper sulfide
B. copper(II) sulfide
C. copper(II) sulfate
D. copper(I) sulfide
E. copper(I) sulfite

Your Turn!

Which is the correct formula for ammonium sulfite?

A. $\mathrm{NH}_{4} \mathrm{SO}_{3}$
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$
C. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
D. $\mathrm{NH}_{4} \mathrm{~S}$
E. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$

Hydrates

- Crystals that contain water molecules
e.g., Plaster: $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ calcium sulfate dihydrate
- Water is not tightly held
- Dehydration
- Removal of water by heating
- Remaining solid is anhydrous(without water)

Blue $=$
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

White $=\mathrm{CuSO}_{4}$

Naming Hydrates

- Ionic compounds
- Crystals contain water molecules
- Fixed proportions relative to ionic substance
- Naming
- Name ionic compound
- Give number of water molecules in formula using Greek prefixes

mono-	$=1$	
hexa- $=6$		
di-	$=2$	
hepta- $=7$		
tri-	$=3$	
octa- $=8$		
tetra-	$=4$	
nona- $=9$		
penta-	$=5$	
deca- $=10$		

Learning Check: Naming Hydrates

- $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
- calcium sulfate dihydrate
- $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
- cobalt(II) chloride hexahydrate
- $\mathrm{FeI}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
- iron(III) iodide trihydrate

Your Turn!

What is the correct formula for copper(II) sulfate pentahydrate?
A. $\mathrm{CuSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CuSO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CoSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CoSO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
E. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Your Turn!

What is the correct name for $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
A. iron nitrate nonahydrate B. iron(III) nitrate nonahydrate
C. Ferium (III) nitrate decahydrate
D. iron(III) nitrite nonahydrate
E. iron(III) nitrate heptahydrate

Molecules vs. Ionic Compounds

 Molecules- Discrete unit
- Water = two hydrogen atoms bonded to one oxygen atom

Ionic Compounds

- Ions packed as close as possible to each other
- Sodium chloride: Six anions surround each cation; six cations
surround each anion
- No one ion "belongs" to another

Molecular Compounds

- Formed when nonmetals combine
$-\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad 2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
- Millions of compounds can form from a few non-metals
- Organic chemistry and biochemistry
- Deal with chemistry of carbon + hydrogen, nitrogen, and oxygen
- A few compounds have only two atoms - Diatomics: HCl, CO, HF, NO
- Most molecules are far more complex
- Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ urea $\left(\mathrm{CON}_{2} \mathrm{H}_{4}\right)$

Nomenclature of Molecular Compounds

- Goal is a name that translates clearly into molecular formula
Naming Binary Molecular Compounds
- Which two elements present?
- How many of each?

Format:

- First element in formula
- Use English name
- Second element
- Use stem and append suffix -ide
- Use Greek number prefixes to specify how many atoms of each element

Naming Binary Molecular Compounds

1. hydrogen chloride

$$
\begin{equation*}
1 \mathrm{H} \quad 1 \mathrm{Cl} \tag{HCl}
\end{equation*}
$$

2. phosphorous pentachloride

$$
\begin{array}{llll}
1 \mathrm{P} & 5 \mathrm{Cl} & \mathrm{PCl}_{5}
\end{array}
$$

3. triselenium dinitride

$$
3 \mathrm{Se} 2 \mathrm{~N} \quad \mathrm{Se}_{3} \mathrm{~N}_{2}
$$

- Mono always omitted on first element
- Often omitted on second element unless more than one combination of same two elements e.g., Carbon monoxide CO Carbon dioxide CO_{2}
- When prefix ends in vowel similar to start of element name, drop prefix vowel

Learning Check: Name Each

Format:

- Number prefix + first element name
- Number prefix + stem + -ide for second element
- $\mathrm{AsF}_{3}=$ arsenic trifluoride
- $\mathrm{HBr}=$ hydrogen bromide
- $\mathrm{N}_{2} \mathrm{O}_{4}=$ dinitrogen tetroxide
- $\mathrm{N}_{2} \mathrm{O}_{5}=$ dinitrogen pentoxide
- $\mathrm{CO}=$ carbon monoxide
- $\mathrm{CO}_{2}=$ carbon dioxide

Your Turn!

Which is the correct formula for nitrogen triiodide?

A. $\mathrm{N}_{3} \mathrm{I}$
B. NI_{3}
C. NIO_{3}
D. $\mathrm{N}\left(\mathrm{IO}_{3}\right)_{3}$

E . none of the above

Your Turn!

Which is the correct name for $\mathrm{P}_{4} \mathrm{O}_{10}$?
A. phosphorus oxide
B. phosphorous decoxide
C. tetraphosphorus decoxide
D. tetraphosphorus oxide
E. decoxygen tetraphosphide

Your Turn!

Which is the correct formula for disulfur decafluoride?
A. $\mathrm{Su}_{2} \mathrm{~F}_{10}$
B. SF_{5}
C. $\mathrm{S}_{2} \mathrm{~F}_{10}$
D. $\mathrm{S}_{3} \mathrm{~F}_{10}$
E. $\mathrm{S}_{2} \mathrm{~F}_{4}$

Exceptions to Naming Binary Molecules

 Binary compounds of nonmetals +hydrogen

- No prefixes to be used
- Get number of hydrogens for each nonmetal from periodic table
- Hydrogen sulfide $=\mathrm{H}_{2} \mathrm{~S}$
- Hydrogen telluride $=\mathrm{H}_{2} \mathrm{Te}$ Molecules with Common Names
- Some molecules have names that predate IUPAC systematic names
- Water $\mathrm{H}_{2} \mathrm{O}$ - Sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
- Ammonia NH_{3} • Phosphine PH_{3}

Summary of Naming

[^0]: ${ }^{2}$ You will only encounter this ion in aqueous solutions.
 ${ }^{\mathrm{b}}$ You will often see and hear the alternate names for these ions.

