WILEY

Chapter 1 Scientific Measurements

Chemistry, 7th Edition International Student Version Brady/Jespersen/Hyslop

Matter and Its Classifications

Matter

Anything that has mass and occupies space

Mass

- How much matter given object has
- Measure of object's momentum, or resistance to change in motion

Weight

Force with which object is attracted by gravity

Example: Mass vs. Weight

on moon and on earth

- Weight on moon = $\frac{1}{6}$ weight on earth
- Astronaut mass regardless of location

Elements

- Substances that can't be decomposed into simpler materials by chemical reactions
- Substances composed of only one type of atom
- Simplest forms of matter that we can work with directly
- More complex substances composed of elements in various combinations

Compound

- Formed from two or more atoms of different elements
- Always combined in same fixed ratios by mass
- Can be broken down into elements by some chemical changes
- e.g., Water decomposed to elemental hydrogen and oxygen

Pure Substance vs. Mixture Pure substances

- Elements and compounds
- Composition always same regardless of source

Mixture

- Can have variable compositions
- Made up of two or more substances
- e.g., CO₂ in water—varying amounts of "fizz" in soda
- Two broad categories of mixtures:
 - Heterogeneous
 - Homogeneous

Homogeneous Mixtures

- Same properties throughout sample
- Solution

e.g.,

Liquid solution

- Sugar in water
- Coca-Cola (without ice)
- Gas solution
 - Air
 - Contains nitrogen, oxygen, carbon dioxide and other gases

Solid solution

- US 5¢ coin Metal alloy
 - Contains copper and nickel metals

Heterogeneous Mixtures

- Two or more regions of different properties
- Solution with multiple phases
- Separate layers

e.g.,

- Salad dressing
 - Oil and vinegar
- Ice and water
 - Same composition
 - Two different physical states

Relationship of Elements, Compounds, and Substances

Physical Change

- No new substances formed
- Substance may change state or the proportions
- e.g., Ice melting
- Sugar or salt dissolving
- Stirring iron filings and sulfur together

States of Matter

Solids:

- Fixed shape and volume
- Particles are close together
- Have restricted motion

Liquids:

- Fixed volume, but take container shape
- Particles are close together
- Are able to flow

Gases:

- Expand to fill entire container Daniel Smith/Corbis
- Particles separated by lots of space

e.g., Ice, water, steam

Brady/Jespersen/Hyslop, Chemistry7E, Copyright © 2015 John Wiley & Sons, Inc. All Rights Reserved

Solid

(a)

Chemical Change

or Chemical Reaction

- Formation of new substance or compound
- Involves changing chemical makeup of substances
- New substance has different physical properties
- Can't be separated by physical means (physical properties)

e.g.,

- Fool's gold
- Compound containing sulfur and iron
 - No longer has same physical properties of free elements
 - Can't be separated using magnet

Learning Check:

For each of the following, determine if it represents a chemical or physical change:

	Chemical	Physical
Magnesium burns when heated	X	
Magnesium metal tarnishes in air	X	
Magnesium metal melts at 922 K		X
Grape Kool-Aid lightens when water is added		X

Your Turn!

Which one of the following represents a physical change?

- A. when treated with bleach, some dyed fabrics change color
- B. grape juice left in an open unrefrigerated container turns sour
- C. when heated strongly, sugar turns dark brown
- D. in cold weather, water condenses on the inside surface of single pane windows
- E. when ignited with a match in open air, paper burns

Physical Properties

Properties that can be observed without changing the chemical makeup of a substance

e.g.,

- Color
- Electrical conductivity
- Melting point and boiling point

Chemical Properties

- Describes how a substance undergoes a chemical reaction – its 'reactivity'
 - Involves changing chemical makeup of substances
 - New substance has different physical properties
 - Can't be separated by physical means

e.g.,

- Fool's gold
- Compound containing sulfur and iron
 - No longer has same physical properties of free elements
 - Can't be separated using magnet

Intensive vs. Extensive Properties

Intensive properties

- Independent of sample size
- Used to identify substances
- e.g., Color
 - Density
 - Boiling point
 - Melting point
 - Chemical reactivity

Extensive properties

- Depend on sample size
- e.g., volume and mass

Your Turn!

Which of the following is an extensive property?

- A. Density
- B. Melting point
- C. Color
- D. Temperature
- E. Mass

Observations

- Fall into two categories
- 1.Quantitative observations
 - Numeric data
 - Measure with instrument
 - e.g., Melting point, boiling point, volume, mass

2.Qualitative observations

- Do not involve numerical information
- e.g., Color, rapid boiling, white solid forms

Measurements Include Units

1. Measurements involve comparison

- Always measure relative to reference
 e.g., Foot, meter, kilogram
- Measurement = number + unit + error
 - **e.g.,** Distance between 2 points = 25
 - What unit? inches, feet, yards, miles
 - Meaningless without units

2. Measurements are inexact

- Measuring involves estimation
- Always have uncertainty
- The observer and instrument have inherent physical limitations

International System of Units (SI)

- Standard system of units used in scientific and engineering measurements
- Metric
 Seven Base Units

TABLE 1.2 The SI Base Units						
Measurement	Unit	Abbreviation				
Length	meter	m				
Mass	kilogram	kg				
Time	second	S				
Electric current	ampere	А				
Temperature	kelvin	К				
Amount of substance	mole	mol				
Luminous intensity	candela	cd				

SI Units

- Focus on first six in this book
- All physical quantities will have units derived from these seven SI base units
 - e.g., Area
 - Derived from SI units based on definition of area
 - length × width = area
 - meter × meter = area
 - $m \times m = m^2$
 - SI unit for area = square meters = m²
- **Note:** Units undergo same kinds of mathematical operations that numbers do

Learning Check

What is the SI derived unit for velocity?

Velocity (ν) = $\frac{\text{distance}}{\text{time}}$ Velocity units = $\frac{\text{meters}}{\text{seconds}} = \frac{\text{m}}{\text{s}}$

What is the SI derived unit for volume of a cube?
 Volume (V) = length × width × height
 V = meter × meter × meter
 V = m³

Some Non-SI Metric Units Commonly Used in Chemistry

TABLE 1.3 Some Non-SI Metric Units Commonly Used in Chemistry						
Measurement	Unit	Abbreviation	Value in SI Units			
Length	angstrom	Å	$1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$			
Mass	atomic mass unit	u (amu)	$1 \text{ u} = 1.66054 \times 10^{-27} \text{ kg}$ (rounded to six digits)			
	metric ton	t	$1 t = 10^3 kg$			
Time	minute	min.	1 min. = 60 s			
	hour	h	1 h = 60 min. = 3600 s			
Temperature	degree Celsius	°C	$T_{\rm K} = t_{\rm ^{\circ}C} + 273.15$			
Volume	liter	L	$1 L = 1000 cm^3$			

Using Decimal Multipliers

- Use prefixes on SI base units when number is too large or too small for convenient usage
- Only commonly used are listed here
 - For more complete list see Table 1.5 in textbook
- Numerical values of multipliers can be interchanged with prefixes

Example: $1 \text{ mL} = 10^{-3} \text{ L}$

- 1 km = 1000 m
- 1 ng = 10⁻⁹ g
- 1,130,000 m = 1.13×10^6 m = **1.13** Mm

Decimal Multipliers

TABLE 1.5 SI Prefixes—Their Meanings and Values ^a					
Prefix	Meaning	Symbol	Prefix Value ^ь (numerical)	Prefix Value ^b (power of ten)	
exa		E		10^{18}	
peta		Р		10 ¹⁵	
tera		Т		10 ¹²	
giga	billions of	G	100000000	10^{9}	
mega	millions of	М	1000000	10^{6}	
kilo	thousands of	k	1000	10 ³	
hecto		h		10 ²	
deka		da		10^{1}	
deci	tenths of	d	0.1	10^{-1}	
centi	hundredths of	С	0.01	10^{-2}	
milli	thousandths of	m	0.001	10^{-3}	
micro	millionths of	μ	0.000001	10^{-6}	
nano	billionths of	n	0.000000001	10^{-9}	
pico	trillionths of	р	0.000000000001	10^{-12}	
femto		f		10^{-15}	
atto		a		10^{-18}	

^aPrefixes in red type are used most often.

^bNumbers in these columns can be interchanged with the corresponding prefix.

Laboratory Measurements

Four common

- 1. Length
- 2. Volume
- 3. Mass
- 4. Temperature

Laboratory Measurements

1. Length

- SI Unit is meter (m)
- Meter too large for most laboratory measurements
- Commonly use
 - Centimeter (cm)
 - 1 cm = 10⁻² m = 0.01 m
 - Millimeter (mm)
 - 1 mm = 10⁻³ m = 0.001 m

2. Volume

- Dimensions of (length)³
- SI unit for Volume = m³
- Most laboratory measurements use *V* in liters (L)
 - 1 L = 1 dm³ (exactly)
- Chemistry glassware marked in L or mL
 - 1 L = 1000 mL
- What is a mL?
 - $1 \text{ mL} = 1 \text{ cm}^3$

3. Mass

- SI unit is kilogram (kg)
 - Frequently use grams (g) in laboratory as more realistic size
- 1 kg = 1000 g $1 \text{ g} = 0.1000 \text{ kg} = \overline{1000} \text{ g}$
- Mass is measured by comparing weight of sample with weights of known standard masses
- Instrument used = balance

4. Temperature

- Measured with thermometer
- Three common scales

A. Fahrenheit scale

- Common in US
- Water freezes at 32 °F and boils at 212 °F
- 180 degree units between melting and boiling points of water

4. Temperature

B. Celsius scale

- Most common for use in science
- Water freezes at 0 °C
- Water boils at 100 °C
- 100 degree units between melting and boiling points of water

4. Temperature

C. Kelvin scale

- SI unit of temperature is kelvin (K)
 - Note: No degree symbol in front of K
- Water freezes at 273.15 K and boils at 373.15 K
 - 100 degree units between melting and boiling points
- Only difference between Kelvin and Celsius scale is zero point

Absolute Zero

- Zero point on Kelvin scale
- Corresponds to nature's lowest possible temperature

Temperature Conversions

Water boils

Water freezes

Kelvin, K

373 K

100 Degrees

273 K

Celsius, °C

100 °C

100 Degrees

--- 0 °C

310 K

Fahrenheit. °F

180 Degrees

--- 32 °F

37.0 °C

Example: 100 ° C = ? ${}^{\circ}F_{F} = \left(\frac{9 \ {}^{\circ}F}{5 \ {}^{\circ}C}\right) 100 \ {}^{\circ}C + 32^{\circ}F$ $t_{F} = 212 \ {}^{\circ}F$

Temperature Conversions

- Common laboratory thermometers are marked in Celsius scale
- Must convert to Kelvin scale

$$T_{\rm K} = (t_{\rm C} + 273.15 \ ^{\circ}{\rm C}) \frac{1 \, {\rm K}}{1 \ ^{\circ}{\rm C}}$$

Amounts to adding 273.15 to Celsius temperature

Example: What is the Kelvin temperature of a solution at 25 °C?

$$T_{\rm K} = (25 \ ^{\circ}{\rm C} + 273.15 \ ^{\circ}{\rm C}) \frac{1 \, {\rm K}}{1 \ ^{\circ}{\rm C}} = 298 \, {\rm K}$$

Learning Check: T Conversions 1. Convert 121 °F to the Celsius scale.

$$t_{\mathsf{F}} = \oint_{\check{\mathsf{e}}}^{\check{\mathsf{a}}} \frac{9 \,\,{}^{\circ}\mathsf{F}\,\overset{\circ}{\mathsf{o}}}{5 \,\,{}^{\circ}\mathsf{C}\,\overset{\circ}{\overset{\circ}{\mathfrak{g}}}} t_{\mathsf{C}} + 32 \,\,{}^{\circ}\mathsf{F} \qquad t_{\mathsf{C}} = \left(t_{\mathsf{F}} - 32 \,\,{}^{\circ}\mathsf{F}\right) \quad \oint_{\check{\mathsf{e}}}^{\check{\mathsf{a}}} \frac{5 \,\,{}^{\circ}\mathsf{C}\,\overset{\circ}{\mathsf{o}}}{9 \,\,{}^{\circ}\mathsf{F}\,\overset{\circ}{\overset{\circ}{\mathfrak{g}}}} t_{C} = \left(121 \,\,{}^{o}F - 32 \,\,{}^{\circ}F\right) \left(\frac{5 \,\,{}^{\circ}C}{9 \,\,{}^{\circ}F}\right) = \mathbf{49}\,\,^{\circ}\,\,\mathbf{C}$$

2. Convert 121 °F to the Kelvin scale.

We already have in °C so...

$$T_{K} = (t_{C} + 273.15 \circ C) \frac{1 K}{1 \circ C} = (49 + 273.15 \circ C) \frac{1 K}{1 \circ C}$$

 $T_{\rm K} = 332 \, {\rm K}$

Learning Check: T Conversions 3. Convert 77 K to the Celsius scale.

$$T_{\rm K} = (t_{\rm C} + 273.15 \text{ °C}) \frac{1 \text{ K}}{1 \text{ °C}} \qquad t_{\rm C} = (T_{\rm K} - 273.15 \text{ K}) \frac{1 \text{ °C}}{1 \text{ K}}$$
$$t_{\rm C} = (77 \text{ K} - 273.15 \text{ K}) \frac{1 \text{ °C}}{1 \text{ K}} = -196 \text{ °C}$$

4. Convert 77 K to the Fahrenheit scale.

1 K

We already have in °C so

$$t_{F} = \frac{2}{6} \frac{9 \ ^{\circ}F}{5 \ ^{\circ}C} \frac{196 \ ^{\circ}C}{5} + 32 \ ^{\circ}F = -321 \ ^{\circ}F$$
In a recent accident some drums of uranium hexafluoride were lost in the English Channel. The melting point of uranium hexafluoride is 64.53 ° C. What is the melting point of uranium hexafluoride on the Fahrenheit scale?

A. 67.85 °F B. 96.53 °F C. 116.2 °F D. 337.5 °F E. 148.2 °F $t_{\rm F} = \frac{\overset{2}{6}}{\overset{9}{5}} \frac{\circ {\rm F}}{\circ {\rm C}} \frac{\dot{\circ}}{\dot{\circ}} t_{\rm C} + 32 °F$ $t_{\rm F} = \frac{\overset{2}{6}}{\overset{9}{5}} \frac{\circ {\rm F}}{\circ {\rm C}} \frac{\dot{\circ}}{\dot{\circ}} 64.53 °{\rm C} + 32 °{\rm F}$

On an absolute temperature scale, 100 ° F is *not* double 50 ° F (i.e., not 'twice as hot'). What temperature, in ° F, would really be double 50 ° F (hint: convert 50 ° F to K, double the Kelvin temperature, then convert back to °F) $(F_{3?C}) = 10 ° C$ A. 560 ° F B. 25 ° F 10 °C + 273.15 K = 283.15 K

- C. 200 ° F Doubled is 566.3 K
- D. 283.15 ° F 566.3 K 273.15 K = 293.15 °C

E. 566 ° F $t_F = \left(\frac{9 °F}{5 °C}\right) 293.15 °C + 32 °F = 560 °F$

Uncertainties in Measurements

- Measurements all inexact
 - Contain uncertainties or errors
- Sources of errors
 - Limitations of reading instrument
- Ways to minimize errors
 - Take series of measurements
 - Data clusters around central value
 - Calculate average or mean values
 - Report average value

Limits in Reading Instruments

- Consider two Celsius thermometers
- Left thermometer has markings every 1°C
 - T between 24 °C and 25 °C
 - About 3/10 of way between marks
 - Can estimate to 0.1 °C = uncertainty
 - T = 24.3 ± 0.1 °C
- Right thermometer has markings every 0.1 ° C
 - T reading between 24.3 °C and 24.4 °C
 - Can estimate 0.01 °C
 - T = 24.32 ± 0.01 °C

Limits in Reading Instruments

- Finer graduations in markings
 - Means smaller uncertainties in measurements
- Reliability of data
 - Indicated by number of digits used to represent it

• What about digital displays?

- Mass of beaker = 65.23 g on digital balance
- Still has uncertainty
- Assume ¹/₂ in last readable digit
- Record as 65.230 ± 0.005 g

Significant Figures

- Scientific convention:
 - All digits in measurement up to and including first estimated digit are significant.
- Number of certain digits plus first uncertain digit
- Digits in measurement from first non-zero number on left to first estimated digit on right

Rules for Significant Figures

All non-zero numbers are significant.
 e.g., 3.456 has 4 sig. figs.

- 2. Zeros between non-zero numbers are significant.
 - **e.g.,** 20,089 or 2.0089 \times 10⁴ has **5** sig. figs
- 3. Trailing zeros always count as significant if number has decimal point
 e.g., 500. or 5.00 × 10² has 3 sig. figs

Rules for Significant Figures

- 4. Final zeros on number without decimal point are NOT significant
 - **e.g.,** 104,956,000 or 1.04956 × 10⁸ has **6** sig. figs.
- 5. Final zeros to right of decimal point are significant

e.g., 3.00 has **3** sig. figs.

- 6. Leading zeros, to left of first nonzero digit, are never counted as significant
 - **e.g.**, 0.00012 or 1.2×10^{-4} has **2** sig. figs.

Learning Check

How many significant figures does each of the following numbers have?

		Scientific Notation	# of Sig. Figs.
1.	413.97	4.1397×10^{2}	5
2.	0.0006	6×10^{-4}	1
3.	5.120063	5.120063	7
4.	161,000	1.61×10^{5}	3
5.	3600.	3.600×10^{3}	4

How many significant figures are in 19.0000?

- A. 2
- B. 3
- C. 4
- D. 5
- E. 6

How many significant figures are in 0.0005650850?

- A. 7
- **B.** 8
- C. 9
- D. 10
- E. 11

- Could be rewritten as 5.650850 \times 10⁻⁴

Accuracy and Precision Accuracy

- How close measurement is to true or accepted true value
- Measuring device must be calibrated with standard reference to give correct value

Precision

- How well set of repeated measurements of same quantity agree with each other
- More significant figures equals more precise measurement

Rounding to Correct Digit

1. If digit to be dropped is **greater than 5**, last remaining digit is **rounded up**.

e.g., 3.677 is rounded up to 3.68

- If number to be dropped is less than 5, last remaining digit stays the same.
 e.g., 6.632 is rounded to 6.63
- 3. If number to be dropped is exactly 5, then if digit to left of 5 is
 - a. Even, it remains the same.
 - **e.g**., 6.65 is rounded to 6.6
 - **b. Odd,** it rounds up.
 - **e.g.,** 6.3<u>5</u> is rounded to 6.4

Scientific Notation

- Clearest way to present number of significant figures unambiguously
 - Report number between 1 and 10 followed by correct power of 10
 - Indicates only significant digits
- e.g., 75,000 people attend a concert
 - If a rough estimate
 - Uncertainty ± 1000 people
 - 7.5 × 10⁴
 - If number estimated from aerial photograph
 - Uncertainty ±100 people
 - 7.50 × 10⁴

Learning Check

Round each of the following to three significant figures. Use scientific notation where needed.

- 1. 37.459 **37.5 or 3.75** × **10**¹
- 2. 5431978 **5.43** × **10**⁶
- 3. 132.7789003 **133 or 1.33** × 10²
- 4. 0.00087564 **8.77** × 10⁻⁴
- 5. 7.665

7.66

Round 0.00564458 to four significant figures and express using scientific notation.

- A. 5.64×10^{-2}
- B. $5.000 \times 10^{\text{-3}}$
- C. 5.645×10^{-4}
- D. 0.56446
- E. 5.645×10^{-3}

Significant Figures in Calculations

Multiplication and Division

 Number of significant figures in answer = number of significant figures in least precise measurement

e.g., 10.54 × 31.4 × 16.987= 5620 = 5.62 × 10³ 4 sig. figs. × 3 sig. figs. × 5 sig. figs. = 3 sig. figs.

e.g., 5.896 ÷ 0.008= 700 = 7 × 10² 4 sig. figs. ÷ 1 sig. fig. = 1 sig. fig.

Give the value of the following calculation to the correct number of significant figures.

 $\left(\frac{635.4 \times 0.0045}{2.3589}\right)$

- A. 1.21213B. 1.212C. 1.212132774
- D. 1.2
- E. 1

Significant Figures in Calculations

Addition and Subtraction

- Answer has same number of decimal places as quantity with **fewest number** of decimal places.
- 12.9753 4 decimal places e.g., 1 decimal place 319.5 3 decimal places + 4.398 1 decimal place 336.9 0 decimal places 397 e.g., 2 decimal places - 273.15 0 decimal place 124
 - Brady/Jespersen/Hyslop, Chemistry7E, Copyright © 2015 John Wiley & Sons, Inc. All Rights Reserved

Learning Check

For each calculation, give the answer to the correct number of significant figures.

- 1. 10.0 g + 1.03 g + 0.243 g = 11.3 g or 1.13 × 10^{1} g
- 2. 19.556 ° C 19.552 ° C = **0.004** ° C or 4×10^{-3} ° C
- 3. $327.5 \text{ m} \times 4.52 \text{ m} = 1.48 \times 10^3 \text{ m}$

4. 15.985 g \div 24.12 mL = **0.6627 g/mL** or **6.627** × **10**⁻¹ g/mL

When the expression,

412.272 + 0.00031 - 1.00797 + 0.000024 + 12.8

is evaluated, the result should be expressed as:

- A. 424.06
- B. 424.064364
- C. 424.1
- D. 424.064
- E. 424

When the expression,

152.6736 - 0.0028 - 125.00797 + 56.795 + 12.853

is evaluated, the result should be expressed to the:

- A. tenths place
- B. hundredths place
- C. thousandths place
- D. ten-thousandths place
- E. hundred-thousandths place

Learning Check

For the following calculation, give the answer to the correct number of significant figures.

$$\frac{(71.359 \text{ m} - 71.357 \text{ m})}{(3.2 \text{ s} \times 3.67 \text{ s})} = \frac{(0.002 \text{ m})}{(11.744 \text{ s}^2)}$$

$= 2 \times 10^{-4} \text{ m/s}^2$

2. $(13.674 \text{ cm} \times 4.35 \text{ cm} \times 0.35 \text{ cm})$ (856 s + 1531.1 s)

$=\frac{(20.818665 \text{ cm}^3)}{(2387.1 \text{ s})} = 0.0087 \text{ cm}^3/\text{s}$

Exact Numbers

- Numbers that come from definitions
 - 12 in. = 1 ft
 - 60 s = 1 min
- Numbers that come from direct count
 - Number of people in small room
- Have no uncertainty
- Assume they have infinite number of significant figures
- Do not affect number of significant figures in multiplication or division

Express the answer to the following with the correct number of significant figures:

$$36.00 \text{ in } \times \left(\frac{\text{ft.}}{12 \text{ in.}}\right) =$$

- A. 3 ft.
- B. 3.0 ft
- C. 3.00 ft.
- D. 3.000 ft.
- E. 3.00000 ft.

36.00 has four sig. figs.The conversion is exact.So the answer has four sig. figs.

For the following calculation, give the answer to the correct number of significant figures.

 $(14.5 \text{ cm} \times 12.334 \text{ cm})$

(2.223 cm - 1.04 cm)

- A. 179 cm²
- B. 1.18 cm
- C. 151.2 cm
- D. 151 cm
- E. 178.843 cm²

$$\frac{(178.843 \text{ cm}^2)}{(1.183 \text{ cm})}$$

Dimensional Analysis

- Also called the Factor Label Method
- Not all calculations use specific equation
- Use units (dimensions) to analyze problem

Conversion Factor

- Fraction formed from valid equality or equivalence between units
- Used to switch from one system of measurement and units to another

Given _× Conversion ₌ Desired Quantity Factor Quantity

Conversion Factors

Example: How to convert a person's height from 68.0 in to cm?

Start with fact

2.54 cm = 1 in. (exact)

- Dividing both sides by 1 in. or 2.54 cm gives 1
- $\frac{2.54 \text{ cm}}{1 \text{ in.}} = \frac{1 \text{ in.}}{1 \text{ in.}} = \mathbf{1} \qquad \frac{2.54 \text{ cm}}{2.54 \text{ cm}} = \frac{1 \text{ in.}}{2.54 \text{ cm}} = \mathbf{1}$
- Cancel units
- Leave ratio that equals 1
- Use fact that units behave as numbers do in mathematical operations

Dimensional Analysis

 Now multiply original number by conversion factor that cancels old units and leaves new

Given
Quantity×Conversion
Factor=Desired
Quantity $68.0 \text{ jn.} \times \frac{2.54 \text{ cm}}{1 \text{ jn.}}$ =173 \text{ cm}

 Dimensional analysis can tell us when we have done wrong arithmetic

 $68.0 \text{ in.} \times \frac{1 \text{ in.}}{2.54 \text{ cm}} = 26.8 \text{ in}^2/\text{cm}$

Units not correct

Using Dimensional Analysis

Example: Convert 0.097 m to mm.

- Relationship is $1 \text{ mm} = 1 \times 10^{-3} \text{ m}$
- Can make two conversion factors

$$\frac{1 \text{ mm}}{1 \times 10^{-3} \text{ m}} \qquad \frac{1 \times 10^{-3} \text{ m}}{1 \text{ mm}}$$

Since going from m to mm use one on left.

 $0.097 \text{ m} \times \frac{1 \text{ mm}}{1 \times 10^{-3} \text{ m}} = 97 \text{ cm}$

Learning Check

Example: Convert 3.5 m³ to cm³.

- Start with basic equality 1 cm = 0.01 m
- Now cube both sides
 - Units and numbers
 - $(1 \text{ cm})^3 = (0.01 \text{ m})^3$
 - $1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3$
- Can make two conversion factors $\frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3} \text{ or } \frac{1 \times 10^{-6} \text{ m}^3}{1 \text{ cm}^3}$ $3.5 \text{ m}^3 \times \frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3} = 3.5 \times 10^6 \text{ cm}^3$

Non-metric to Metric Units

Convert speed of light from 3.00 \times 10⁸ m/s to mi/hr

- Use dimensional analysis
- 1 min = 60 s
 60 min = 1 hr
- 1 km = 1000 m 1 mi = 1.609 km

 $\frac{3.00 \times 10^8 \text{ m}}{\text{s}} \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hr}} = 1.08 \times 10^{12} \text{ m/hr}$ $\frac{1.08 \times 10^{12} \text{ m}}{\text{hr}} \times \frac{1 \text{ km}}{1000 \text{ m}} \times \frac{1 \text{ mi}}{1.609 \text{ km}} =$ $6.71 \times 10^8 \text{ mi/hr}$

The Honda Insight hybrid electric car has a gas mileage rating of 56 miles to the gallon. What is this rating expressed in units of kilometers per liter?

1 gal = 3.784 L 1 mile = 1.609 km

- A. 1.3 \times 10² km L⁻¹
- B. 24 km L⁻¹

C. 15 km L⁻¹

- $56 \frac{\text{mi}}{\text{gal}} \times \frac{1 \text{ gal}}{3.784 \text{ L}} \times \frac{1.609 \text{ km}}{1 \text{ mi}}$
- D. 3.4 × 10^2 km L⁻¹
- E. 9.2 km L⁻¹

The volume of a basketball is 433.5 in³. Convert this to mm³.

- A. 1.101 \times 10⁻² mm³
- B. 7.104 \times 10⁶ mm³
- C. 7.104 \times 10⁴ mm³
- D. 1.101 \times 10⁴ mm³
- E. 1.101 \times 10⁶ mm³

Density

Ratio of object's mass to its volume

density =
$$\frac{\text{mass}}{\text{volume}}$$
 $d = \frac{m}{V}$

- Intensive property (size independent)
 - Determined by taking ratio of two extensive properties (size dependent)
 - Frequently ratio of two size dependent properties leads to size independent property
 - Sample size cancels
- Units
 - g/mL or g/cm³

Learning Check

 A student weighs a piece of gold that has a volume of 11.02 cm³ of gold. She finds the mass to be 212 g. What is the density of gold?

$$d=\frac{m}{V}$$

$d = \frac{212 \text{ g}}{11.02 \text{ cm}^3} = 19.3 \text{ g/cm}^3$

Another student has a piece of gold with a volume of 1.00 cm³. What does it weigh? **19.3 g** What if it were 2.00 cm³ in volume? **38.6 g**
Density

- Most substances expand slightly when heated
 - Same mass
 - Larger volume
 - Less dense
- Density decreases slightly as temperature increases
- Liquids and solids
 - Change is very small
 - Can ignore except in very precise calculations
- Density useful to transfer between mass and volume of substance

Brady/Jespersen/Hyslop, Chemistry7E, Copyright © 2015 John Wiley & Sons, Inc. All Rights Reserved

Learning Check

1. Glass has a density of 2.2 g/cm³. What is the volume occupied by 35 g of glass?

$$V = \frac{m}{d} = \frac{35 \text{ g}}{2.2 \text{ g/cm}^3} = 16. \text{ g}$$

2. What is the mass of 400. cm³ of glass?

 $m = d \quad V = 2.2 \text{ g/cm}^3 \quad 400. \text{ cm}^3 = 8.8 \times 10^2 \text{ cm}^3$

Your Turn!

Titanium is a metal used to make artificial joints. It has a density of 4.54 g/cm³. What volume will a titanium hip joint occupy if its mass is 205 g?

- A. 9.31 \times 10² cm³
- B. 4.51 \times 10¹ cm³
- C. 2.21 × 10^{-2} cm³
- D. 1.07 × 10^{-3} cm³
- E. 2.20 \times 10⁻¹ cm³

$$V = \frac{205 \text{ g}}{4.54 \text{ g/cm}^3} =$$

Your Turn!

A sample of zinc metal (density = 7.14 g cm⁻³) was submerged in a graduated cylinder containing water. The water level rose from 162.5 cm³ to 186.0 cm³ when the sample was submerged. How many grams did the sample weigh?

A. 1.16×10^{3} g mass = density × volume B. 1.33×10^{3} g volume = (186.0 cm³ – 162.5 cm³) C. 23.5 g = 23.5 cm³ D. 1.68 × 10² g mass = 7.14 g cm⁻³ × 23.5 cm³