

P(Ank) = 0.4

ĩ

$$\frac{X | F | cF}{5 | 3 | 3} Form 3$$
Form 3

6. Find the third quartile of the following sample data.
$$\frac{10}{10} \frac{5}{5 | 3} | \frac{1}{2} | \frac{1}{14} \frac{X | frequency}{16 | 2} | \frac{1}{5 | 3} | \frac{1}{3} |$$

7. A box contains 5 red, 2 blue and 3 yellow balls. 3 balls are drawn, one at a time without replacement.

Find the probability of having a red then a blue then a red ball.

$$\frac{5}{10}$$
, $\frac{2}{9}$, $\frac{4}{8}$

99

 $\frac{1}{18} = 0.056$

5/9 = 0.655

Y=1-2(50) =1-100

For questions 8-9. Consider a bell-shaped sample data. With mean 50 and standard deviation 14. Suppose that the sample data is coded to Y = 1 - 2x

8. Find the mean \bar{Y}

9. Find the 16th percentile of the coded data (i.e.
$$P_{16}(Y)$$
) -12.7
 $P_{16}(Y) = 1 - 2 P_{84}(X)$
 $= 1 - 2 (64)$
 $= -12.7$
 $P_{16}(X) = X + S$
 $= 50 + 1.9$
 $= 6.4$

10. Suppose we have two boxes, <u>Box A contains 4 red and 2 black balls</u>, while <u>box B contains 3 red and 3 black balls</u>. One box is selected and one ball is drawn at random from that box. If the probability of selecting box A is $\frac{1}{3}$ and the probability of selecting box B is $\frac{2}{3}$. What is the probability that the drawn ball is red?

$$f(A) = \frac{1}{3}$$
 $f(B) = \frac{2}{3}$
 $p(B|A) = \frac{1}{3}$ $p(B|B) = \frac{3}{3}$

$$P(R|A) = \frac{1}{6} \qquad F(r|a) = \mathcal{E}_2$$

$$\frac{1}{3}\left(\frac{4}{6}\right) + \frac{2}{3}\left(\frac{3}{6}\right) \\ + \frac{4}{18} + \frac{6}{18} + \frac{10}{18} + \frac{10}{18} + \frac{5}{18}$$

First Exam Math 131 Summer 10-11							
Name	Student number	Section	Serial number				
1. A set of exam It is decided	n marks has mean 60, median 55, to subtract 8 from all the marks.	, IQR=20 and standard For the new set of mark	deviation=13 marks s,				
(a) What is	the mean? 52						
(b) what is	the median? 47						
(c) what is t	he IQR? 20						
(d) What is	the standard deviation?	3					
2. Find the thir	d quartile of the following sample	X Frequency 6 3 11 4 14 5 16 4	15				

3. A sample data with size 81 has mean $\overline{X} = 100$ and standard deviation S = 20. At least how many observations in the sample data are between 70 and 130?

4. Suppose that the mean of a population is 30. Assume the standard deviation is known to be 4 and that the frequency distribution is known to be bell-shaped.

Approximately what percentage of measurements fall in the interval (26, 38) 81.5

5. From a group of 5 men and 7 women, how many different committees consisting of 3 men and 2 women can be formed? $\binom{5}{3}\binom{7}{2} = 210^{-1}$

6. The probability that a student passes Mathematics is 2/3 and the probability that he passes English is 4/9. If the probability that he will pass at least one subject is 2/5, what is the

probability that he will pass both subjects?

4 32

الدمحقرة سعاد الحيص

ای د. ('سل اکلو

		Key form	2
	First Exam Summer	Math 131 10-11	
Name	Student number	Section	Serial number

-

1. A set of exam marks has mean 70, median 65, IQR=25 and standard deviation=15 marks. It is decided to subtract 10 from all the marks. For the new set of marks,

Y = X - 10	$\overline{x} = 70$ Median = 65	S = 15
(a) What is the mean? 60		

55 (b) what is the median?

2. Find the third quartile of the following sample data

$$\frac{14+18}{2} = (16)$$

3. A sample data with size 54 has mean $\overline{X} = 100$ and standard deviation S = 20. At least how $\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \xrightarrow{\begin{subarray}{c} & & & \\ & & & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ \end{array} \xrightarrow{\begin{subarray}{c}$ many observations in the sample data are between 70 and 130? Obs-, n=54 New 20, all

Form 2

- 6. The probability that a student passes Mathematics is 2/3 and the probability that he passes English is 4/9. If the probability that he will pass at least one subject is 4/5, what is the probability that he will pass both subjects?
- 7. If P(A) = 0.25, P(B) = 0.5, compute P(A|B) in the following cases:
 - (a) If A and B are disjoint, then P(A|B) =
 - (b) If A and B are independent, then $P(\bar{A}|B) =$

First Exam Math 131 Summer 10-11							
Name	Student number	Section	Serial number				
. A set of exam It is decided t	n marks has mean 70, median 65 o subtract 10 from all the marks	, IQR=25 and standard . For the new set of ma	l deviation=15 marks rks,				
(a) What is t	the mean? 60						
(b) what is t	he median? 55						
(c) what is the	ne IQR? 25						
(d) What is t	the standard deviation?	Ď					
. Find the third	quartile of the following sample	X Frequency 6 3 11 4 14 5 18 4	16				

3. A sample data with size 54 has mean $\overline{X} = 100$ and standard deviation S = 20. At least how many observations in the sample data are between 70 and 130? 30

4. Suppose that the mean of a population is 30. Assume the standard deviation is known to be 4 and that the frequency distribution is known to be bell-shaped.

Approximately what percentage of measurements fall in the interval (22,34) 81.5%

5. From a group of 5 men and 7 women, how many different committees consisting of 2 men and 3 women can be formed? $\begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 350$

6. The probability that a student passes Mathematics is 2/3 and the probability that he passes English is 4/9. If the probability that he will pass at least one subject is 4/5, what is the probability that he will pass both subjects?

For boil

Form (1)
4. seample data with size \$1 has mean
$$\overline{X} = 100$$
 and standard deviation $S = 20$. It least how
many observations in the sample data are between 70 and 1307
 $\overline{A} = \frac{1}{25}$
 $\overline{X} = \frac{10}{5}$
 $\overline{X} = \frac{10}$

7. If P(A) = 0.5, P(B) = 0.25, compute P(A|B) in the following cases:

(a) If A and B are disjoint, then
$$P(A|B) =$$

(b) If A and B are independent, then
$$P(A|B) = \mathcal{O} \cdot 5$$

6. A box contains 3 red, 4 blue and 2 yellow balls. 3 balls are drawn, one at a time without replacement.

Find the probability of having a red then a blue then a red ball.	3, 2, 2, 2, 7	= -

For questions 3-4. Consider a **bell-shaped** sample data. with mean 30 and standard deviation 14. Suppose that the sample data is coded to Y = 1 - 2x

8. Find the mean \bar{Y} - 59

9. Find the 16th percentile of the coded data (i.e.
$$P_{16}(Y)$$
) -87 $(-2(99))$

10. Suppose we have two boxes, <u>Box A contains 2 red and 4 black balls</u>, while <u>box B contains 3 red and 3 black balls</u>. One box is selected and from that box we draw one ball at random. If the probability of selecting box A is 1/6 and the probability of selecting box B is 5/6. What is the probability that the drawn ball is

red?
$$\frac{17}{36} = 0.472$$

$$\frac{2(25)+2(4)}{4} = \frac{50+8}{4} = \frac{58}{4}$$

5. Suppose that
$$P(\underline{A}) = 0.7$$
, and $P(B) = 0.5$, and $P(\underline{A} \cup B) = 0.8$. Find $P(\underline{A} \cap \overline{B})$

$$P(\underline{A} \cap \underline{B}) = 0.7 + 0.5 - 0.8$$

$$P(\underline{A} \cap \underline{B}) = 0.7 + 0.5 - 0.8$$

$$P(\underline{A} \cap \underline{B}) = 0.7 + 0.7$$

$$A = 0.7$$

$$A = 0.7$$

$$A = 0.7$$

$$A = 0.7$$

6. A box contains <u>4 red, 3 blue and 1</u> yellow balls. 3 balls are drawn, one at a time <u>without replacement</u>.

For questions 3-4. Consider a **bell-shaped** sample data. with mean 60 and standard deviation 14. Suppose that the sample data is coded to Y = 1 - 2x

8. Find the mean $\bar{\mathbf{Y}}$	-119
-------------------------------------	------

9. Find the 16th percentile of the coded data (i.e.
$$P_{16}(Y)$$
) $-1Y7$ $X_{yy} = \frac{x}{74} + \frac{x}{74}$

10. Suppose we have two boxes, Box A contains 4 red and 2 black balls, while box B contains 3 red and 3 black balls. One box is selected and from that box we draw one ball at random. If the probability of selecting box A is 1/6 and the probability of selecting box B is 5/6. What is the probability that the drawn ball is

red?
$$\frac{19}{36} = 0.528$$

$$P(A) = \frac{1}{6}$$

$$P(A) = \frac{1}{6}$$

$$P(A) = \frac{1}{6}$$

$$P(A) = \frac{5}{6}$$

$$\frac{4}{6}$$

$$\frac{4}{6}$$

$$\frac{7}{6}$$

$$\frac{7}{16}$$

$$\frac{1}{16} = \frac{19}{16}$$

6. Find the third quartile of the following sample data
$$\frac{16}{9}$$
 $\frac{11}{5}$ $\frac{11}{3}$ $\frac{1}{4}$ $\frac{11}{5}$ $\frac{11}{3}$ $\frac{11}{4}$ $\frac{1}{5}$ $\frac{11}{3}$ $\frac{1}{2}$ $\frac{11}{1}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{11}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{10.5}{11}$ $\frac{11}{16}$ $\frac{1}{2}$ $\frac{1}{19}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{10.5}{11}$ $\frac{11}{16}$ $\frac{1}{2}$ $\frac{1}{19}$ $\frac{1}{2}$ $\frac{1}{$

7. A box contains 2 red, 1 blue and 3 yellow balls. 3 balls are drawn, one at a time without replacement.

Find the probability of having a red then a blue then a red ball.

$$P(RBR) = \frac{2}{6} \cdot \frac{1}{5} \cdot \frac{1}{4} \cdot \frac{1}{5} \cdot \frac{1}{4}$$

For questions 8-9. Consider a bell-shaped sample data. With mean 40 and standard deviation 14. Suppose that the sample data is coded to Y = 1 - 2x

4/6

8. Find the mean \bar{Y} – 79

12R 1B 3Y

Tikel=6

9. Find the 16th percentile of the coded data (i.e.
$$P_{16}(Y)$$
)

$$P_{16}(y) = 1 - 2 f g_{y}(x)$$

$$= 1 - 2 (54)$$

$$K = 1$$

$$X_{34} = x + 5$$

$$= 4 \cup + 1^{17}$$

$$= 5^{17} + 5^{17}$$

10. Suppose we have two boxes, Box A contains 4 red and 2 black balls, while box B contains 4 red and 2 black balls. One box is selected and one ball is drawn at random from that box. If the probability of selecting box A is $\frac{2}{3}$ and the probability of selecting box B is $\frac{1}{3}$. What is the probability that the drawn ball is red?

Part B: Write down every step of your work. Each question is worth 4 marks. Q6) A sample data has mean $\bar{X} = 30$ and standard deviation $S_X = 12$. Each observation X in this sample is multiplied by -2 to produce a new sample. Find an interval that contains at least $\frac{15}{16}$ of the observations in the new sample.

$$\begin{pmatrix} y - kS_{y}, y + kS_{y} \end{pmatrix}$$

$$\begin{pmatrix} -60 - 4(24), -60 + 4(24) \end{pmatrix}$$

$$\begin{pmatrix} -156, 36 \end{pmatrix}$$

$$\begin{pmatrix} -156, 36 \end{pmatrix}$$

$$\begin{pmatrix} -156, 36 \end{pmatrix}$$

Q7) Let A, B be events. Suppose that P(A|B) = 0.2, $P(A \cup B) = 0.6$ and $P(\overline{B}) = 0.5$. Find P(A).

$$p(AUB) = p(A) + 0.5 - 0.5(0.2)$$

$$o.6 = p(A) + 0.4$$

$$p(B) = +1$$

$$p(B) = +1$$

$$p(A) = 0.2$$

$$p(Anb) + 1$$

Department of Mathematics

103131 First Test

10

Name (in Arabic):

Instructor's name:

Class days and time:

Number:

Part A: fill in the blanks with answers only. Each question is worth 2 marks. Q1) Consider the following grouped sample data of 10 observations:

Class	2 to 4 5 to 7		8 to10	11 to 13	
Frequency	4 .	3	2	1	
			· · · · ·		

c) the proportion of observations that are less than or equal to 9 equals $\frac{q}{10}$

Q2) Three numbers are randomly selected from the numbers 12,3,4(5,6) 89 without replacement. The probability that two numbers of them are odd equals......

Q3) A sample data contains 10 observations and has mean $\overline{X} = 4$. The observation 10 in the sample is changed to 5. The mean of the new sample equals.... 3×5 .

40-10+5

Q4) Consider the following sample data of 24 observationsx12345678

A	1	2		-	5	<u> </u>	L /	0
Frequency	5	5	5	3	2	2	1	1

-4

Q7) Let A, B be events. Suppose that P(A|B) = 0.2, $P(A \cup B) = 0.7$ and $P(\overline{B}) = 0.7$. Find P(A).

$$p(A \cup E) = p(A) + p(A) + p(A) - p(A)(B)$$

$$o \cdot 4 = p(A) + o \cdot 3 - p(A)(B) p(B)$$

$$o \cdot 4 + o \cdot 06 = p(A)$$

$$\Rightarrow p(A) = o \cdot 46$$

$$p(A \cap E) = 0.06$$

P(A

Department of Mathematics

103131 First Test

Name (in Arabic):

Number:

Instructor's name:

Class days and time:

Part A: fill in the blanks with answers only. Each question is worth 2 marks.

Class	2 to 4	5 to 7	8 to 10	11 to 13
Frequency	3	3	2	2
•			10	

c) the proportion of observations that are less than or equal to 9 equals $\frac{7}{10} = 0.7$

Q2) Three numbers are randomly selected from the numbers 1,2,3,4,5,6,7,8 without replacement. The probability that two numbers of them are odd equals.....

Q4) Consider the following sample data of 24 observations 2 3 4 5 6 7 8 1 4 2 2 2 Frequency 3 5 5 1

VN

(¥ 3 Part B: Write down every step of your work. Each question is worth 4 marks. Q6) A sample data has mean $\bar{X} = 30$ and standard deviation $S_X = 10$. Each observation X in this sample is multiplied by -2 to produce a new sample. Find an interval that contains at least $\frac{15}{16}$ of the observations in the new sample.

Q7) Let A, B be events. Suppose that P(A|B) = 0.2, $P(A \cup B) = 0.6$ and $P(\overline{B}) = 0.6$. Find P(A). $P(A \cap B) = P(A|B) P(B)$ = 0.2 (0.7) $= 0.0 \overline{S}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\overline{A} \quad \overline{0.03}$ $\overline{A} \quad \overline{0.32}$ $\overline{A} \quad \overline{0.43}$ $\overline{A} \quad \overline{A} \quad \overline{A$

IPM	form 2	
J.		

Department of Mathematics

103131 First Test

Name (in Arabic):

.

Number:

Instructor's name:

Class days and time:

Part A: fill in the blanks with answers only. Each question is worth 2 marks. 01) Consider the following grouped sample data of 10 observations:

Q1) Consider in	c lonowing group	scu sumple uata	or to objervau	0113.	_
Class	2 to 4	5 to 7	8 to10	11 to 13]
Frequency	2	3	2	3] (
•		-7	2		_

a) the mean of this sample data equals $1 \cdot 0$

b) if one observation is selected from this sample and found to be greater than or equal to 5, then the probability that it is in the 3rd class (8 to 10) equals....

c) the proportion of observations that are less than or equal to 9 equals...... $\frac{6}{10} = 0.6$

Q2) Three numbers are randomly selected from the numbers 1,2,3,4,5,6,7 without $\frac{18}{3.5} = 0.517$ replacement. The probability that two numbers of them are odd equals...... $\frac{18}{3.5} = \frac{18}{3.5}$

Q4) Conside	r the	follo	wing	sam	ple d	ata o	f 24	obsei	rvations
x	1	2	3	4	5	6	7	8	
Frequency	2	5	5	3	2	2	2	.2	

Brm) (200) 12.33 + 42635 + 32.46.35 .26.35 + 42635 + 32.46.35

18 1

Part B: Write down every step of your work. Each question is worth 4 marks. Q6) A sample data has mean $\overline{X} = 30$ and standard deviation $S_X = 8$. Each observation X in this sample is multiplied by -2 to produce a new sample. Find an interval that contains at least $\frac{15}{16}$ of the observations in the new sample.

tains at least $\frac{1}{16}$ of the observations in the new sample. $\begin{pmatrix} y - KS_y, y + KS_y \end{pmatrix} \qquad \begin{pmatrix} k = 4 \\ y - KS_y, y + KS_y \end{pmatrix} \qquad y = -60$ $\begin{pmatrix} -60 - 4(16), -60 + 4(16) \end{pmatrix} \qquad Sy = 2(8) = 16$ $\begin{pmatrix} -124, 4 \end{pmatrix} \qquad 0 = 0 = 0 = 16$ $\begin{pmatrix} 0 - 24, 4 \end{pmatrix} \qquad 0 = 0 = 0 = 16$ $\begin{pmatrix} 0 - 24, 4 \\ y - 4 \end{pmatrix} \qquad 0 = 0 = 0 = 16$

Q7) Let A, B be events. Suppose that P(A|B) = 0.2, $P(A \cup B) = 0.6$ and $P(\overline{B}) = 0.7$. Find P(A).

$$P(AUB) = P(A) + P(B) - P(AB) P(B)$$

= P(A) + 0.3 - 0.2(0.3)
0.6 = P(A) + 0.2Y
P(A) = 0.36

		Fail 2	012-2013	- ¥ . /	en					
	THE UNIVERSITY OF JORDAN	Departme	ent of Mather	natics 👾 🕴 1	03131 First Test					
	Name (in Arabic)			Number						
	Instructor's name:		Class days and time:							
	Part A: fill in the Q1) Consider the f	blanks with a ollowing grou	inswers only. E ped sample data	ach question is to of 10 observation	worth 2 marks. ons:	-				
	Class	2 to 4	5 to 7	8 to 10	11 to 13					
	Frequency	1	3	2	4					
	a) the mean of this sample data equals									
4.5 1	b) if one observa equal to 5, the $\frac{x-y}{6-y} = \frac{1,5}{3}$ c) the proportion	tion is selecte n the probabi $\pi - 4 = \frac{2}{3}$ n of observation	d from this samplity that it is in the from this samplity that it is in the formula $\left(\frac{2}{2}\right) = 1$ ons that are less	ble and found to h ne 3 rd class (8 to than or equal to	pe <u>greater</u> that of 10) equals	2 1000				
10.5 6	Q2) Three numbers are randomly selected from the numbers $(1,2,3,4,5)$ 6 without $(3,2,3,4,5)$ 6 without replacement. The probability that two numbers of them are odd equals $(3,2,3,4,5)$ $(3,3,3,5)$ $(3,3,3,5)$									
	Q3) A sample data contains 10 observations and has mean $\overline{X} = 8$. The observation 10 in the sample is changed to 5. The mean of the new sample equals $\overline{F_{1.5}}$									
	Q4) Consider the x 1 Frequency 1	following sam234553	ple data of 24 of 5 6 7 2 3 2	eservations 8 3						
	The third quartile	Q ₃ of this sam	nple data equals			**				

$$(3) \qquad (3) \qquad (3)$$

.

,

xf 3 <u>p,1</u> 0.3 علاء خليل أحر عيد X (mid Pt.) | 3 18 2 18 > 8-10 o.2 2 9 11-13 4 48 0.4 12 [6 87

1,2,3,4,5,6 Q2)

P(odd,

عدد فلل أحد عبده

QI)	class	(<u>f</u> [X	$\left(\frac{xf}{x}\right)$	rt 1	cf
	2 11	11	3	3	0.1	
	5-7	3	6	18	0.3	4
	8-10	2	9	18	0.2	6
	11-13	4	12	48	0.4	10
		10		87		

6)

$$\begin{array}{cccc} x_{1} & -2 \\ x_{2} & -2 \\ x_{3} & -2 \\ x_{3} & -2 \end{array} - 2 \\ x_{3} & -2 \\ x_$$

Part B: Write down every step of your work. Each question is worth 4 marks. Q6) A sample data has mean $\overline{X} = 30$ and standard deviation $S_X = 8$. Each observation X in this sample is multiplied by -2 to produce a new sample. Find an interval that contains at least $\frac{15}{16}$ of the observations in the new sample.

$$\begin{split} \vec{x} = 30 , \quad sta(x) = 8 \\ & \text{Mean}(y) = -2 (\vec{x}) \Rightarrow \vec{y} = -60 \\ & sta(y) = 101 \quad sta(x) \Rightarrow sta(y) = 1-21 \quad + 1 \\ & \text{W} = Y + ks \quad Sta(y) = 16 \\ & \text{W} = -60 + (a)(6) \quad \frac{2}{2} - 60 \quad \text{W} \\ & \text{W} = -60 + (a)(6) \quad \frac{2}{7} - ks \quad \vec{y} \quad Y + ks \quad [-12Y_1]^{-1} \quad \frac{1}{16} = \frac{1}{k^2} \\ & \text{W} = -60 - (4)(16) \quad \frac{1}{7} - ks \quad \vec{y} \quad Y + ks \quad [-12Y_1]^{-1} \quad \frac{1}{16} = \frac{1}{k^2} \\ & \text{Z} = -60 - (4)(16) \quad \frac{1}{16} \quad \frac{1}{16} = \frac{1}{k^2} \\ & \text{Z} = -124 \quad \text{He Interval} \quad [-4], \quad -124 \quad \text{K}^2 = 16 \\ & \text{Z} = -124 \quad \text{He Interval} \quad [-4], \quad -124 \quad \text{K}^2 = 16 \\ & \text{Z} = -124 \quad \text{C}(4)(16) \quad \frac{1}{16} = \frac{1}{16} (A + B) = 0.2 P(A \cup B) = 0.6 \text{ and } P(B) = 0.7 \\ & \text{Find} P(A) \\ & P(A \mid B) = \frac{P(A \mid B)}{P(B)} = \frac{P(A \cap B)}{P(B)} \quad P(B) = 0.7 \\ & P(A \cup B) = \frac{P(A)}{P(A)} + P(B) - P(A \cup B) = 0.6 \text{ and } P(B) = 0.7 \\ & P(A \cup B) = P(A) + P(B) - P(A \cup B) = 0.6 \text{ and } P(B) = 0.7 \\ & P(A \cap B) = P(A \mid B) P(B) - --6 \\ & P(A \cap B) = P(A \mid B) P(B) - --6 \\ & P(A \cap B) = P(A \mid B) P(B) - --6 \\ & P(A) + P(B) - P(A \cup B) = P(A \mid B) P(B) \\ & P(A) - 0.3 = 0.6 \\ & P(A) = 0.36 \\ & P(A) = 0.36 \\ \end{array}$$

$$\frac{1}{1} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}} \underbrace{\frac{1}{3}}{\frac{1}{3}} \underbrace{\frac{1}{3}} \underbrace{\frac{1$$

- (Q4) A bell shaped sample data has mean $\overline{X} = 40$ and standard deviation S = 15. What is the percentage of observations in this sample data that are between 70 and 85. A)13.5% B)15.5% C)2% D)2.5%
- (Q5) Consider a collection of observations (measured to the nearest integer) with minimum observation=9 and maximum observation 67. If we wish to organize these observations using frequency table of 6 classes of equal width (length). Find the the width of each class. (A)10 B)9 C)8 D)7
- (Q6) Given the following information:

Box I: contains 2 Red and 4 Black balls.

Box II: contains 4 Red and 2 Black balls.

One box is chosen randomly with probability (1/2) and then one ball is drawn. Find

(a) P(drawn ball is red | Box I was chosen $A)\frac{3}{4}$ $B)\frac{1}{2}$ $C)^{\frac{2}{3}}$ $D)\frac{1}{3}$

P(drawn ball is red) $B)_{12}^{1}$ $C)^{\frac{5}{12}}$ $D)_{12}^{7}$ $A)_{\frac{1}{2}}$

(c) P(Box I is drawn | ball drawn is r ed) $A)\frac{4}{7}$ $B)^{\frac{3}{5}}$ D)1 $C)^{\frac{1}{3}}$

7. A box contains 4 red, 3 blue and 1 yellow balls. 3 balls are drawn, one at a time without replacement.

14

 $\frac{19}{31} = 0.528$

Find the probability of having a red then a blue then a red ball.

$$p(RBR) = \frac{4}{P}, \quad \frac{7}{7}, \quad \frac{1}{6}$$

$$p(RBR) = \frac{4}{P}, \quad \frac{7}{7}, \quad \frac{1}{6}$$

For questions 8-9. Consider a bell-shaped sample data. With mean 60 and standard deviation 14. Suppose that the sample data is coded to Y = 1 - 2x

8. Find the mean
$$\bar{Y}$$
 -119
 $\bar{Y} = 1 - 2\bar{X} = 1 - 2(60) = 1 - 12v$

9. Find the 16th percentile of the coded data (i.e.
$$P_{16}(Y)$$
) -147
 $\int_{16}^{6}(Y) = 1 - 2 \int_{16}^{7} y_{16}(X)$
 $= 1 - 2(74)$
 $\int_{16}^{7} y_{16}(X) = \frac{x}{60 + 14} = 74$

10. Suppose we have two boxes, <u>Box A contains 4 red and 2 black balls</u>, while <u>box B contains 3 red and 3 black balls</u>. One box is selected and one ball is drawn at random from that box. If the probability of selecting box A is $\frac{1}{6}$ and the probability of selecting box B is $\frac{5}{6}$. What is the probability that the drawn ball is red?

$$\frac{A}{20} + \frac{B}{10} = \frac{1}{6} + \frac{B}{10} = \frac{1}{6} + \frac{1}{36} +$$

٢.

4. Find the variance of the sample data
$$-5, -2, 0, 2, 5$$
 $\underbrace{58}_{Y} = 14.5$

7

5.

.

Suppose that
$$P(A) = 0.7$$
, and $P(B) = 0.5$, and $P(A \cup B) = 0.8$. Find $P(A \cap \overline{B})$

$$P(A \cup B) = P(A) + P(B) - P(A \cap R)$$

$$P(A \cap \overline{B}) = P(A) - P(A \cap R)$$

$$P(A \cap \overline{B}) = P(A) - P(A \cap R)$$

$$= 0 \cdot 7 - 0 \cdot 7 = 0 \cdot 3$$

3 R 4 B 4 B 7. A box contains 3 red, 4 blue and 2 yellow balls. 3 balls are drawn, one at a time without replacement. 4 B 2 Y P(R B R) = $\frac{3}{9} \cdot \frac{4}{8} \cdot \frac{2}{7}$ P(R B R) = $\frac{3}{9} \cdot \frac{4}{8} \cdot \frac{2}{7}$

For questions 8-9. Consider a bell-shaped sample data. With mean 30 and standard deviation 14. Suppose that the sample data is coded to Y = 1 - 2x

8. Find the mean
$$\bar{Y} = -59$$

 $\bar{Y} = 1 - 2\bar{X} = 1 - 2(3v) = 1 - 60$

9. Find the 16th percentile of the coded data (i.e.
$$P_{16}(Y)$$
)
 $P_{16}(Y) = 1 - 2 P_{5Y}(X)$

$$= 1 - 2 (YY)$$
 $P_{16}(Y) = 30 + 1Y$

$$= 44$$

10. Suppose we have two boxes, Box A contains 2 red and 4 black balls, while box B contains 3 red and 3 black balls. One box is selected and one ball is drawn at random from that box. If the probability of selecting box A is $\frac{1}{6}$ and the probability of selecting box B is $\frac{5}{6}$. What is the probability that the drawn ball is red?

$$\begin{array}{c} A \\ 2R \\ 4B \\ \hline \\ P(A) = \frac{1}{6} \\ P(B) = \frac{3R}{3B} \\ \hline \\ P(B) = \frac{3}{6} \\ P(B) = \frac{3}{6} \\ P(B) = \frac{3}{6} \\ \hline \\ P(B) = \frac{3}{6}$$

-

$$\frac{17}{36} = 0.472$$