University of Jordan Mathematics Department

	فت	الو	المدرس:		الرقم الجامعي:			(سىم:
	1.]	In kgs, if the weight	s of male student	ts are bell-sha	aped-with mean	70 and \mathbf{v} :	ariance 25, the	n the weight abov
-	,	which there are 16%	6 of the students	is /)			· .
	:	a. 85	b. 82	. S	. 75	d.	80	
	2.	The 30th percentile	of the following	data: 5, 9, 9,	2, 7, 6, 11, 7, is	_	· · ·	
	$\left(\right)$	a. 6)	b. 5	с	3.5	d.	5.5	,
	3.	The following samp	ole presents the g	rades of 10 s	tudent:			<u>.</u> .
_		Class Frequency						
		1-5 2						
	. [6-10 5			·			
		11-15 2			· · ·	-		·
		16-20 1						
		The variance is	•					
		a. 22	b. 19	с	. 20.21	(_d.	21.11	
	<mark>4</mark> .	If we roll a die twic	e, the probability	y that the sum	a of the two num	bers appe	ear is smaller t	han 7 and the firs
		number is odd is						
		a. 11/36	b. 10/36	(_ °	. 9/36	d.	12/36	
	<mark>5</mark> .	If the grades of 400	students have m	ean 70 and s	landard deviation	n 6, then	the number of	students with gra
_		outside the interval	(61,79) is at mos	st				
		a. 222	b. 170	с	. 230	(d.	178	
	6.	For a given data: Q	$_1$ =28, Q $_2$ =40, an	d Q ₃ =50. If	we multiply each	1 observa	tion by - 3, the	n we add 10, the
		O ₃ becomes					· .	·
	. ((a) =74	b. –160	c	140	d.	-94	· .
	7	Only one of the foll	lowing statement	ts is correct:				
-	· ·	a If the observat	ions are skewed t	to the right th	en the mean is s	smaller th	an the mode.	
		$p(A \cap \overline{R}) < P$	$(A \cap R)$ for any 1	two events A	R in O			
			(A + D), for any $(A + D)$		d 0 111	1 74		
		c. For some data,	, if $Q_1 = 32$ and th	e range is 40	, then Q_3 could	be /4		
	11	d / If the variance	of a sample data	. is zero then	the range of this	data is z	ero.	
	K	A HI						
	\mathcal{V}	TATI						
							-	
ay								•

1

 1-10
 20

 11-20
 40

 21-30
 30

 31-40
 10

Find the number of students with grades greater than 27.

9. In a given sample of 10 students, the grades have mean 20 and variance 16, if we change a grade from 20 into 30. Find the sum of the squares of the new data $\left(\sum_{n \in W} x_i^2\right)$.

10. Let A and B be two events in the sample space Ω . If P(A) = 0.7, $P(A \cap \overline{B}) = 0.4$, and $P(\overline{A} \cap \overline{B}) = 0.2$. Find P(B).

(3.2.1. 2.1 University of Jordan Department of Mathematics Student name (in Arabic): . Student number: . Version C 1) A sample of size 10 has mean 15 and variance 30. If an observation x = 20 in the sample is changed to 15 then the value of $\sum x^2$ of the sample after this change becomes 2930 c) 2695 a) **b**) 2520 d) 2446 e) 2345 Consider a frequency table with five classes and total frequency 25. Suppose that the cumulative frequency of the fourth class is 16. Then the relative frequency of the fifth class is ر b) 0.36 (ا e) 0.46 a) 1.00 c) 0.64 d) 0.20 A multiple choice test consists of 10 questions. Suppose that only 4 randomly selected questions of this test will be graded. If a student answered only 6 questions correctly, find the probability that the student will get a full mark in this test. 1/14 <u>b)</u> 3/5 d) 5/14 c2/5-e) None of the above group of 5 students contains 3 brothers. All students in this group will be randomly seated in ordered chairs. Find the probability that the 3 brothers will be seated next to each other. a) 4/10 e) None of the b) 2/10 c) 6/10 d) 3/10 above. The mean and standard deviation of a sample of size 100 are 10 and 2, respectively. The smallest possible number of observations that are between 6 and 14 is collection of observations X has mean μ_X and variance σ_X^2 . Let $Y = \frac{X - \mu_X}{\sigma_X}$. Then $\chi = \frac{1}{2}$ a) 61 d) -80 b) 84 e) None of the $\mathcal{Y} = \frac{-\mathcal{N}_{V}}{5x} + \frac{1}{5x} \mathcal{Y}$ b) $\mu_{Y} = 1$, ..., c) $\mu_{Y} = 0$, $\sigma_{Y} = 1$, $\sigma_{Y} = 0$ a) $\mu_{y} = 1$, $\sigma_{y} = 0$ d) $\mu_{y} = 0$, above. $\sigma_{\rm v} = 1$ Find the variance S^2 of the following (grouped) sample 4 to6 7 to 9 Class -2 to 0 1 to 3 Frequency 2 3 12.696 e) 8.083 a) b) 11.384 c) 9,681 d) 10.529 The 20th percentile P_{20} of the scores of 200 students is 10 and the 90th percentile P_{90} of these scores is 85. The number of students who got scores between 10 and 85 is 10 85 180 a) b) 140 c) 160 d) 120 ~e) 150 If a sample of size 20 and mean 10 is combined with a sample of size 10 and mean 20, then the mean of the combined sample equals a) 20.0 b) 13.3 c) 14.1 d) 10.0 15.010 4 2(7)(1)(2)(1) + 2(7)(1)(2) +

CITAN CITAN	For bell-shaped d 60, then the mode at 60 Find the 70th perc	ata. Suppose that the f of the data equals b) 85 centile P_{ro} of the follo	irst.quartile Q ₁) 65	equals 35 and that	the interquartile range . e) 95	IQR equa
\overline{V}	Class		2 to 5	6 to 9	10 to 13	
	Frequency	5	4	4	2	
A 12)	a) 8 The following are	b) 6.5 c two classes of a frequ) 7.5 hency distribution	(d) 8.5	e) 7	
	The actual limits	of the first class are	$ \begin{array}{r} $	4 6		
	a) 3.55 - 6.85	b) 3.1-6.4 c) 3.65 - 5.85	d) 3.55 – 5.95	e) 3.6 – 5.9	
<u> () </u>	Suppose that $P(A)$	P = 0.6, $P(B) = 0.4$ and	$d P(A \cap B) = 0.$	2. Find $P((A \cap \overline{B}))$	$\cup B$)	
14)	The frequency of a) a qualitative r b) a continuous c) a discrete ran d) not a random e) always small	a randomly selected c random variable random variable dom variable variable er than its sumulative	lass of a freque	ncy table is		
	ey aways small		nequency		$\begin{pmatrix} 3 \\ -q \end{pmatrix} \begin{pmatrix} 9 \\ 13 \\ 13 \end{pmatrix}$	an a
					13	(10.5
		<i></i>			(0.7)(v) =	£ 101-
						1, 9

2

.

Make up Exam for Math 131 Test I 29-3-2011

8. A sample data contains 6 observations and has mean $\bar{X}=10$. The observation 13 in the sample is modified to 7. Find the mean of the new sample.

10. Suppose that P(A) = 0.7, and P(B) = 0.5, and $P(A \cup B) = 0.8$ then $P(\bar{A} \cap B)$ equals a) 0.2 b) 0.15 c) 0.1 d) 0.3 e) 0.4

ONT

** If the distribution of weights of 200 students has the mean 50kgs, and s.d. 5 kgs,

11. The number of students with weights exceed 60 kgs. is approximately:

a)at least 75 b)at least 150 c)at most 50 d) at most 25 e)at most 150

12.f the distribution is bell-shaped, then the number of students with weights between 45 and 60 kgs. is approximately:

a)82 b)163 c)136 d)190 e)195

1 : -

**A box contains 2 White and 3 Black balls. If 2 balls are drawn from the box with replacement and \dot{x} = number of White balls drawn then

d) 0.48

d)0.48

13.P(x = 0) =

à tì

a) 016 b) 1.2 c) 0.8 14.E(X) =a)0.8 b)0.36 c)0.16 -15.Variance of X =

b)0.36

a)0.16

ļ

0256

~~ + (Ex)

c) 0.48

d) 0.8 e)1.2

 \mathcal{N}^{I}

e)1.2

** Given the joint probability distribution of X and Y.

$$\frac{x}{0} = \frac{0}{0.1} + \frac{1}{0.3} + \frac{2}{0.05} + \frac{2}{0.1} + \frac{2}{0.5} + \frac{2}{0.15} + \frac{2}{0.15}$$

University of Jordan	Math. 131	Data: 13/11/2011			
DEPT OF MATH	EXAM 1	TIME: 60 MIN.			
Student Name:	الا المراجع الم	Student Number:			
Instructor Name:	ا دا هر این می این این این این این این این این این ای	Section Number:			

1 1 1 () 2 ~) 2 ~)

**

Answer Sheet

1-	a	b	\bigcirc	d		9-	(a)	Ь	с	d
2-	a	b	с	d		10-	a	b	с	(d)
3-	a	b	с	d		11-	a	b	\bigcirc	d
4-	a	b	с	d	. 1	12-	a	b	c	d
5-	a	b	с	d	1	3-	а	b	c	d
6-	a	b	с	d	1	4-	a	b	c	d
7-	a	b	С	d	1.	5-	a	b	c	d
8-	a	b	C	d	10	5-	a	b	c	đ

Answer each of the following questions and put "X" on the correct choice on front page

* For Questions (1)-(3): A sample of 200 items is taken randomly. The mean and standard deviation of their weights are respectively, 40 and 6 Kgs. Also first quartile (1) The smallest number of items with weights inside [28, 52] (a) 112 (b) 50 (c) 150 (d) 88 (2) If each weight is multiplied by -2 and 3.5 is added, then third quartile Q_3 of the (a) -36.5 (b) 43.5 (c) - 153.5 (d) -146.5 (3) If one item with weight 1045 Kgs. was added to the sample, the new sample (a) 45 Kgs. (b) 34.95 Kgs. (c) 40 Kgs. (d) 35 Kgs. * For Questions (4)-(7): Given the following information: Box I : contains 2 Red (R) and 4 Black (B) balls Box II: contains 3 Red (R) and 3 Black (B) balls. One box is chosen randomly with probability 1/2 and then one ball is drawn without (4) P(drawn ball is black | Box II was chosen) = (a) 1/4(b) 1/2 (c) 2/3(d) 1/3 (5) P(drawn ball is black) (a) 7/12 (b) 5/12 (c) 1/3(d) 2/3 (6) P(Box II is drawn | ball drawn is black) = (a) 3/5 (b) 2/5 (c) 4/7 (d) 3/7 (7) If two balls are drawn from Box II without replacement, what is the probability that one of them is black (a) 8/15

(a) 6/15 (b) 3/5 (c) 1/3 (d)2/15

* For Questions (8)- P(B) = 0.3. (8) $P(A \cup B) =$	(11): In a random ex	periment, $P(A \cap \overline{B}) =$	0.4, $P(A \cap B) = 0.1$	
(a) 0.6	(b) 0.7	(c) 0.8	(d) 0.9	
(9) $P(\overline{A} B) =$				
(a) 2/3	(b) 1/3	(c) 1/2	(d) 1/4	
(10) $P(A \overline{B}) =$				
(a) 3/7	(b) 1/2	(c) 1/3	(d) 4/7	
(11) $P(\overline{A} \cap \overline{B}) =$				
(a) 0.4	(b) 0.6	(c) 0.3	(d) 0.7	
* <u>For Questions (12)-(1</u>	5): The joint probab	ility distribution of X Y	and Y is given by	
X	$\begin{array}{ccc} 0 & 1/6 \\ 1 & 0 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Also given that $E(X)=E(X)$	$\frac{2}{(Y)=1, VAR(X)=VA}$	$\frac{1/6}{R(Y)=2/3}$ and $Cov(X)$	$\overline{\mathbf{V}}_{-1/2}$	
(12) Corr(X, Y) =		(-) und COV(A,	1)1/3	
(a) 1/2	(b)1/2	(c) -1/4	(d) 3/4	
(13) Cov(1-3X, -2Y)=			(u) <i>5/4</i>	
(a) 2	(b) 6	(c) -6	(d) -2	
$(14) \to (4X-3Y^2-2)=$			(<i>)</i>	

(c) -3

(c) 2/3

1

(a) 1

(a) 1/3

(15) Var (X+Y-1)=

(16) For the following data 5, 10, 15, 15, 15, 30, 30, 30, 30, 1000, which measure of central tendency would be the least useful (b) mean (c) mode

(b) -1

(b) 1

(d) variance

(d) 3

(d) 4/3

÷

0301131 Principles of Statistics

March 31, 2014

Name:

Number:

Serial No.

Instructor's name:

Section (day and time):

1st test

Mark with an \times the symbol that represents the correct answer. Each question is worth 1.5 marks.

Q1	Q2	Q3 .	Q4	Q5	Q6	/07	Q8	Q9	Q10	Q11	Q12	Q13	Q14
a	а	X	La	a	a	1a	a	a	a	X	a	a	a
b.	b	b	b	b	b	18	b	X	b	ʻb	<u>کلا</u>	b	b
X	X	С	С	X	C	⁄ ç	С	C	С	С	c	С	С
d	ď	d	d	d	d	d	Ă	d	d	d	d	X	d
е	е	е	е	e	X	é	е	е	X	e	е	e	X

Questions 1 and 2 are based on the following sample data:Q1) The mean of this sample equalsa) 7.4b) 8.4c) 9.4d) 10.4e) 11.4

Q2) The pr	oportion of o	bservations tl	hat are less than	12 equals
a) 0.48	b) 0.58	c) 0.68	d) 0.76	e) 0.86

Class	Frequency
0 - 4	4
5 - 9	8
10 - 14	10
15 - 19	3
Total	25

Questions 3 and 4 are based on the following sample data

X	3	4	5	6	7	Total
frequency	7	9	8	5	3	32

Q3) The mode of this sample data equals											
a) 4	b) 7	c) 3	d) 6	e) 5							

Q4J The I	neulan of this s	ample data (equais	
<mark>a) 4.5</mark>	<mark>b)</mark> 6.5	c) 7	d) 3.5	e) 5.5

Q5) In a Statistics test 8 % of the students got grades less than 70. If the first quartile Q_1 of the grades is 30, then the proportion of students who got grades between 30 and 70 equals a) 0.45 b) 0.50 c) 0.55 d) 0.60 e) 0.65

Q6) For a bell shaped sample data with mean 20 and standard deviation 5, the
percentage of observations that are between 25 and 30 is abouta) 0.5%b) 10.5%c) 15.5%d) 2%e) 13.5%

0301131 Principles of Statistics 1st test

March 31, 2014

Name:

Number:

Serial No.

Instructor's name:

Section (day and time):

Mark with an imes the symbol that represents the correct answer. Each question is worth 1.5 marks.

Q1	Q2	Q3	Q4	Q5	Q6	97	Q8	Q9	Q10	Q11	Q12	Q13	Q14	
a	X	а	a	a	a	a	а	a	a	а	X	<u></u> a	a	
b	b	b	b	b	b	/b_/	X	b	b	K	b	Xr.	b	
c	С	С	\mathbf{X}	c	X	ć	С	С	X	C	С	C	c	
d	d	d	d	X	d	A	d	d	d	d	d	d	X	
<u>e</u>	e	et	e	e	e	é	e	X	e	е	е	е	е	
Questions 1 and 2 are based on the following sample data:														
Q1) The mean of this sample equals										lass	Freq	uency		
aj 7.4		b)	3.4	(:) 9.4		d) 1	0.4	e_) 11.4	0	-4	·	4
(02) The properties of observations that are less than 12 equals $5-9$ 3												3		
$\sqrt{2}$	ne pro g	ירט הרא	OR UL	ouser	/auon ភាព៥០	s that	are le	ss ina	പ്പടലം പ	quais	10	-14	<u> </u>	.0
aj 0. 1	Ų	սյո	0.30	(.) 0.00)	aj u	·.70	ej	0.00	15	19		5
Quest	Questions 3 and 4 are based on the following sample data													
- <u>X</u>		6	7 8	3 9	10		al	umpr	c alaco					
freque	ency	2	5 9	7 8	8	32								
<mark>Q3) T</mark> a) 9	he mo	ode of b)	this s 10	ample	data	equals	 ; d) 6		e)	8				
<mark>Q4) T</mark> a) 6.5	Q4) The median of this sample data equals a) 6.5 b) 7.5 c) 8.5 d) 9.5 e) 8													
<mark>Q5) Ir</mark> quart betwe a) 0.6	Q5) In a Statistics test 75% of the students got grades less than 70. If the first quartile Q_1 of the grades is 30, then the proportion of students who got grades between 30 and 70 equals													
•														

Q6) For a bell shaped sample data with mean 20 and standard deviation 5, the percentage of observations that are between 25 and 35 is about a) 0.5% b) 10.5% c) 15.5% d) 2% e) 13.5%

In <mark> a Math te</mark>	est, the mean s	core is 18 and	the standard (deviation is 6. Answer
Questions 7	, o anu 9 nortion of stu	dents who got	arados hetwe	en 11 5 and 25 5 is at least
a) 0.36	b) 0.56	c) 0.47	d) 0.80	e) 0.67
08) at least	64% of the gr	ades are in th	e interval	·
a) (2,22)	<mark>b)</mark> (8,28)	c) (10,30)	d) (5,25)	e) (6,26)
Q9) If each	score is multip	plied by 3 ther	10 is added (i	i.e., new score = 3 old
score+10),	then the mean	and standard	deviations of	the new scores equal
a) 56;18	b) 70;24	c) 98;30	d) 82;24	e) 64;18
		_		
Q10) Let A,	B be independ	<mark>dent events su</mark>	ch that $P(A) =$	$= P(B)$. If $P(A \cap B) = 0.49$,
then the pr	obability $P(A $	$\cap B$) (i.e., the p	probability of A	4 and not B) equals
a) 0.09	b) 0.24	c) 0.21	d) 0.06	e) 0.16
011) A box	contains 9 car	ds numbered	from 1 to 9. Ty	wo cards are randomly drawn
from this b	ox without rec	lacement. If th	ne number on t	the first card is less than 4.
then the pr	obability that	the number or	the second ca	ard is (also) less than 4 equals
a) 3/8	b) 1/4	c) 1/2	d) 6/8	e) 5/8
		-, -,		-) - -
Q12) A <mark>tear</mark>	<mark>n of 8 student</mark>	s is randomly :	selected from :	a class that contains 5 girls and
<mark>7 boys. The</mark>	<mark>probability</mark> th	at this team c	ontains exactly	y 2 girls equals
a) 0.1414	b) 0.2424	c) 0.4545	d) 0.5656	e) 0.3535
	· _			
Q13) <mark>In hoy</mark>	w many ways o	can we award	<mark>a gold, a silver</mark>	<mark>' and a bronze medal to three</mark>
people amo	ong 7 participa	ants?		
a) 504	b) 210	c) 120	d) 336	e) 406
Q14) If a sa	imple data is s	kewed to the l	ett (i.e., positiv	rely skewed J, then
a) median <	< mode < mea	n		
- pj median<	:mean <mode< td=""><td></td><td></td><td></td></mode<>			

×.

c) mode < mean < median d) mean < median < mode e) mode < median < mean.

6 jui, 212

وقت المحاضره:	الامتحان الأول	مبادىء ألأخصاء
الرقم الجامعي:	****	ألأسم:

Part 1 : Fill in the rectangular box with the correct answer. Show your work. Answers without solution details are not accepted.

1) (2 marks) Find the 60^{th} percentile P_{60} for following grouped sample data. Class Frequency 4-8 × 9-13,5 5 1=12 9 $\frac{X-8.5}{13.5-8.5} = \frac{12-5}{14-15}$ 14-18.5 2 19-23. 4 20 Total $\frac{X-8.5}{5} = \frac{7}{9}$ 2.39 $\begin{array}{c} c \\ 5 \\ 17 \\ 14 \\ 16 \end{array}$ $X = 8.5 + \frac{35}{9}$ X = 12.39≥ <u>8,5</u> 13,5×

2) (2 marks) The mean of 50 observations is 85. If an observation was incorrectly recorded 150 instead of 15, then he correct mean equals n = 50 $ZX_{11} = 85(80) = 42.50$ $ZX_{12} = 42.50 = 150 + 15 = 4115$

$$x_{nn} = \frac{y_{115}}{50} = (8.2.3)$$

3)(2 marks) If P(A)=0.65, P(B)=0.25 and P(A|B)=0.6, answer a and b

b) (2 marks) $P(A \cup \overline{B}) =$

The second s		 _
1.2	· · · · · · · · · · · · · · · · · · ·	 - · · · - ·
		3
II		
_		

Part 2	2:Ident	ify the	choice	that be	est com	pletes	the stat	tement	or	answers	the	question.
	0.4	~ ~		04				A A	1			

QI_	Q2	Q3	Q4	QS	Q6	Q7	Q8
a	a	a	a	a	a	a	a
b	b	b	b	b	b	b	b
c	С	c	c	С	С	c	c
d	d	d	d	d	d	d	d
e	e	e	e	e	e	e	e

1) Find the median of the sample represented by the following relative frequency table

	Х	relative frequency
	1	0.15
	2	0.25
·	3	0.40
	4	0.10
	5	0.10

.

- a) 2 b) 1.5 c) 3 d) 4 e) 2.5
- 2) The grades of a Math test are bell shaped. If 95% of students grades are in the interval [48,72], then the mean and the standard deviation of the math grades are

a)
$$X = 62, S = 6$$
 b) $X = 60, S = 6$ c) $X = 65, S = 5$ d) $X = 60, S = 10$
e) $\overline{X} = 64, S = 8$

- 3) The mean and the standard deviation of a set of data are 30 and 5 respectively. If each observation is multiplied by 3 and then 4 is added to the result. Then, the mean and the standard deviation of the transformed data are:
 - a) $\overline{X} = 120, S = 20$ b) $\overline{X} = 30, S = 5$ c) $\overline{X} = 123, S = 20$ d) $\overline{X} = 120, S = 5$ e) $\overline{X} = 94, S = 15$
- 4) According to Chebyshev's rule, the proportion of observations within 2 standard deviations of the mean is:

a) At least 75% b) At most 75% c) At least 25% d) At most 25% e) Exactly 25%

- 5) A password consists of digits is to be formed from the numbers 2, 3, 4, 5, 6, 7. What is the probability that the first digit in the password is even?
 - a) 1/2 b) 3/7 c) 1/7 d) 3/14 e) 1/6
- 6) If two balls are selected at random without replacement from a box containing 5 red and 7 black balls, then the probability that the two balls are of different colors is:
 a) 70/132 b) 35/132 c) 70/144 d) 35/144 e) 62/132
- 7) If the upper class limits of the first two classes in a frequency table with equal class widths are 20 and 30, respectively, then, the midpoint (center) of the first class is

 a) 14.5
 b) 15
 c) 15.5
 d) 14
 e) 26
- 8) If P(A) = 0.2, P(B) = 0.5, and if A and B are independent, then $P(A \cup B)$ equals a) 0.5 b) 0.6 c) 0.9 d) 0.3 e) 0.7

University of Jordan Dept. of Math.	Math 131 Exam 1	Date: 4/7/2012 Time: 60 Min.	
Student Name			
od		Student Number:	
Instructor Name:			
*****	*****	Section Number:	
* <u>For Questions (1)-(5)</u> : G	iven the data: -4, 4 -3 3 -2 2	· · · · · · · · · · · · · · · · · · ·	0 0
(1) The mean is	[0]	······································	
(2) The Standard deviation i	is 58 = 19.67	= [3,11]	
(3) The 70^{th} percentile is 9.2°	$7x7=4.9 \approx 5 \Rightarrow P$	70 = 1/2)
(4) If one number is added to	o the list and its value was 10	than the	
in In	L = A	then the mean of the new	
list is	1-251		
0 0			
(5) If each number is multipl	indly 0 total and		
	ted by -2 and then 10 is added	to all numbers, the range	
of the new list is2.1	(2) - 1/()	- · ·	
~1	0)		
* For Questions (6)-(7): The	e mean and standard deviation	of the grades in a general	
value are ou and o, respective	ay.		
(6) If the distribution is hell-d	haped then the properties of		
(6) If the distribution is bell-si	haped, then the proportion of g	grades below 72 is	
(6) If the distribution is bell-s. $\overline{0.9}$	haped, then the proportion of g	grades below 72 is	
 (6) If the distribution is bell-s 	haped, then the proportion of g $\overline{7.5}$ putside [51, 6 9] is $-\frac{1}{(1.5)^2}$	grades below 72 is $-5 - 6 - 44$	
 (6) If the distribution is bell-s (7) The proportion of grades of 	haped, then the proportion of g $\overline{7.5}$ putside [51, $\overline{69}$] is $-\frac{1}{(1.5)^2}$	grades below 72 is $- = - \overline{(0 - 44)}$	
 (6) If the distribution is bell-s (7) The proportion of grades of * For Questions (8)-(10): Le 	haped, then the proportion of g 75 putside [51, 69] is $\frac{1}{(1.5)^2}$ t A and B be any two events	grades below 72 is $-5 - 6 - 44$	
(6) If the distribution is bell-s (7) The proportion of grades of * For Questions (8)-(10): Le P(B) = 0.4. Then	t A and B be any two events	grades below 72 is -5 - 6 - 44 such that $P(A) = 0.5$ and	
(6) If the distribution is bell-s (7) The proportion of grades c * <u>For Questions (8)-(10)</u> ; Le P(B) = 0.4. Then	haped, then the proportion of g 7.5 putside [51, 69] is $-\frac{1}{(1.5)^2}$ t A and B be any two events	grades below 72 is -5 - 6 - 4 - 4 such that $P(A) = 0.5$ and	
(6) If the distribution is bell-s (7) The proportion of grades c * For Questions (8)-(10): Le P(B) = 0.4. Then 8) If A and B are disjoint then	haped, then the proportion of g 7.5 putside [51, 69] is $-\frac{1}{(1.5)^2}$ t A and B be any two events $P(A \cup B) = -\frac{2}{(2.5 + 0.5)^2}$	grades below 72 is $ \frac{2}{6-44} $ such that $P(A) = 0.5$ and $ \frac{4}{6-9} $	
(6) If the distribution is bell-s (7) The proportion of grades c * For Questions (8)-(10): Le P(B) = 0.4. Then 8) If A and B are disjoint then 9) If $P(\overline{B} A) = 0.4$, $P(A \cup B)$	haped, then the proportion of g $\overline{75}$ putside [51, $\overline{69}$] is $-\frac{1}{(1.5)^2}$ t A and B be any two events $P(A \cup B) = -\frac{0.5 + 0}{5}$	grades below 72 is $ \frac{-5}{6-44} $ such that $P(A) = 0.5$ and $ \frac{4-6.9}{6.9} $ $ 2.3 = 6.6 $	
(6) If the distribution is bell-s (7) The proportion of grades c * <u>For Questions (8)-(10)</u> : Le P(B) = 0.4. Then (8) If A and B are disjoint then (9) If $P(\overline{B} A) = 0.4$, $P(A \cup B)$ 10) If $P(\overline{A} \cap B) = 0.2$, $P(A \cup B)$	haped, then the proportion of g $\overline{75}$ putside [51, $\overline{69}$] is $-\frac{1}{(1.5)^2}$ t A and B be any two events $P(A \cup B) = -\frac{0.5 + 0}{(1.5)^2}$ $B) = -\frac{0}{(1.5)^2}$	grades below 72 is $= -\frac{6 - 44}{9}$ such that $P(A) = 0.5$ and $\frac{4 - 6 - 9}{9}$ 2 - 3 = 6 - 6 3 - 2 - 9/A + 8 = 2	0.7
(6) If the distribution is bell-s (7) The proportion of grades c * For Questions (8)-(10): Le P(B) = 0.4. Then 8) If A and B are disjoint then 9) If $P(\overline{B} A) = 0.4$, $P(A \cup B)$ 10) If $P(\overline{A} \cap B) = 0.2$, $P(A \cup B)$	haped, then the proportion of g $\overline{7.5}$ putside [51, $\overline{69}$] is $-\frac{1}{(1.5)^2}$ t A and B be any two events $P(A \cup B) =Q \cdot S + Q \cdot C$ $B) =Q \cdot S + Q \cdot C$ $B) =Q \cdot S + Q \cdot C$	grades below 72 is $= -\frac{6-44}{4}$ such that $P(A) = 0.5$ and $\frac{4-6.9}{2.3} = -\frac{6.6}{2}$	0.7
(6) If the distribution is bell-s (7) The proportion of grades c * For Questions (8)-(10): Le P(B) = 0.4. Then 8) If A and B are disjoint then 9) If $P(\overline{B} A) = 0.4$, $P(A \cup B)$ 10) If $P(\overline{A} \cap B) = 0.2$, $P(A \cup B)$	haped, then the proportion of g $\overline{7.5}$ putside [51, $\overline{69}$] is $-\frac{1}{(1.5)^2}$ t A and B be any two events $P(A \cup B) =Q \cdot S + Q \cdot S$ $P(A \cup B) =Q \cdot S + Q \cdot S$ $P(A \cup B) =Q \cdot S + Q \cdot S$ $P(A \cup B) =Q \cdot S + Q \cdot S$	grades below 72 is $= -\frac{6-44}{-4}$ such that $P(A) = 0.5$ and $\frac{4-6.9}{-2}$ Such that $P(A) = 0.5$ and $= -\frac{6.9}{-2}$	0.7

K,

This question is included

(19) If a student is taken randomly, what is the probability that the student will pass Math.131?

(0,4)(0,7) + (0,6)(0,6) = 0.28 + 0.36 = [0,64]

(20) If a student passed Math.131, what the probability that he is male? 0.36 - 9 = 10.56

M. C. P. . 6 . 4

مبادىء ألأحصاء الأمتحان الأول وقت المحاضر ه الرقم الجامعي:.... ألأسم:....

Part 1 : Fill in the rectangular box with the correct answer. Show your work. Answers without solution details are not accepted.

1) Based on the following grouped sample data, answer a and b.

Class	Frequency] cumfrey
3 –9	4	4
10 - 16	8	12
17-23	10	22
24 - 30	3	25
Total	25	

a) Find the median of the sample.

$$nP = 25 \neq 0-5 = 12 = 5$$

 $M = 17 - 5 + (12 - 5 - 8) + 7$
 $I = - 7 + 7 = 17 - 85$

0.62

b) Find the proportion of the sample that is .

less than 20.

$$2c = 17.5 + \left(\frac{25p - 12}{10}\right)(7) \qquad (1)$$

$$p = \frac{15.5}{25} = 0.62$$

2) Suppose that 30% of those who passed the calculus exam are males and that 25% of males passed the calculus exam. If 40% of students performed the exam are males, then answer a and b.

لنفرض أن ٣٠% من الذين يجتازون امتحان تفاضل وتكامل هم من الذكور وان ٢٥% من الذكور يجتازون امتحان تفاضل وتكامل إذا كان ٤٠% من الطلاب الذين أدوا الامتحان هم من الذكور فأجب عن ما يلي:

a. If a student is selected at random, what is the probability

0.385

)

that he passed the calculus exam.

اخترنا طالبا عشوائيا ، ما احتمال أنه اجتاز الامتحان؟

ما هي نسبة النجاح في التفاضل والتكامل بين الطالبات؟

P(MIS) = PCSIM)P(M) PCSD (5 P(M|s) = 0.307 P(S|M) = 0.25 f(C) P(M) = 0.4 $P(S) = \frac{P(S|M)p(M)}{P(M|S)} = \frac{(0.25)(0.4)}{0.25}$

b. What is the percentage of passing the calculus exam amongst female students?

 $P(S|\overline{M}) = P(M|S)P(S)$

(0.7)(0.33)6.6 = 0.385

Part 2: Identify the choice that best completes the statement or answers the question.

QL	Q2	Q3	Q4	Q5	Q6	Q7	Q8
X	а	a	\times	a	a	a	a
b	X	b	b	b	b	b	b
с	c	с	с	С	X	c	C,
d	d	X	d	d	X	d,	X
e	e	e	e	X	e	X	e

1

1) The mean of 20 observations is 35. If an observation was incorrectly recorded 15 instead of *35, then he correct mean equals

> a) 36 b) 35 c) 34 d) 31 e) 30

2) The grades of a Math test are bell shaped. If 95% of students grades are in the interval [48,72], then the mean and the standard deviation of the math grades are

a) $X = 62, S = 6$	b) $X = 60, S = 6$	c) $\overline{X} = 65, S = 5$	d) $\overline{X} = 60, S = 10$
e) $\overline{X} = 64, S = 8$			

3) The average Calculus grade is 12 with standard deviation 3. Assuming that the grades are bell-shaped distributed, then the proportion of students with grades 9 to 18 is: a) 0.185 b) 0.975 c) 0.84 d) 0.815 e) 0.475

4) A password consists of 4 digits is to be formed from the numbers 2, 3, 4, 5, 6, 7. What is the probability that the first digit in the password is even and the last digit is greater than 4? (と)(ち)

a) 1/4 b) 1/2 c) 2/7 d) 3/14 e) 1/6

5) If the proportion of observations within k standard deviations of the mean is at least 88%, then k equals (approximately)

a) 1 b) 1.5 d) 2.5 c) 2 e) 3

6) If P(A) = 0.35, P(B) = 0.45, and if A and are disjoint, then $P(\overline{A} \cap \overline{B})$ equals a) 0.3 b) 0.5 c) 0.2 d) 0.4 e) 0.35

7) If P(A)=0.65, P(B)=0.25 and P(A|B)=0.6, then $P(A \cap B)$ equals a) 0.2

b) 0.25 c) 0.3 d) 0.125 e) 0.15

8) Categorical data may be presented graphically by: a. histogram b. ogive c. polygon d. bar chart e. frequency curve

98799876756768983987

Instructor's name: Id. Number:

(1) This exam consists of 14 multiple-choice questions .

(2) Mark, with an \times , the correct answer to each question on the following

Q1	a	b	С	d	е
Q2	a	b	С	d	е
Q3	а	b	с	d	e
Q4	a	b	С	d	е
Q5	a	b	C	d	e
Q6	a	b	C	d	e
Q7	a	b	С	d	е
Q8	a	b	c	d	e
Q9	a	b	C:	d	e
Q10	a	b.	C	d	е
Q11	a	b	C	d	е
Q12	a	b	C'	d	e
Q13	a	b	C	d	e
Q14	.a	b	c	d	e

1) Find the percentage of observations that are less than 15 in the following (grouped) sample data

Class -2 - 56-9: 10-13 14~17 Frequency a) 85.137% b) 91.218% c) 80.769% d) 88.117% e) 76.513% 2) The following are the first two classes of a frequency table together with their frequencies 20 - 30 12 * : 31 - 41 15 The actual limits of the first class are

a) 20.5 - 30.5 b) 15 - 35 c) 19.5 - 29.5 d) 19.5 - 30.5 e) 20.5 - 29.5

3) A sample data of size 80 has mean X = 30 and a standard deviation S_X = 8. Suppose that each observation X in this sample data has been coded according to the equation Y = 2 - 2X. Find an interval that contains at least 60 observations of the new observations Y.
a) [-90, -26] b) [14,46] c) [-46, -14] d) [-45, -13] e) [26,90]

98799876756768983987

		Class (grades)	Cumulative frequency	
	[0-2	3	
	· ·	3-5	11	
	[6-8	20	
	1	9-10	24	
The relative fr	equency of the s	econd class (3-5)	equals	
a) 11/24	b) 1/3	c), 3/11	d) 1/4	e) 3/8

5) A sample data of size 10 has mean $\overline{X} = 10$ and standard deviation S = 10. An observation $X_1 = 12$ was mistakenly recorded as 8 and another observation $X_2 = 6$ was mistakenly recorded as 10. Find the correct value of $\sum X^2$ of the data.

a)	1946	b)	1936	c)	1926	d)	1956	e)	1916
							•		

6) An observation is randomly selected from a grouped sample data represented by the following frequency polygon. Find the probability that this observation is less than or equal to 8.

7) Consider a collection of observations (measured to the nearest integer) with minimum observation = 9 and maximum observation 67. If we wish to organize these observations using frequency table of 7 classes of equal widths then the width of each class equals

a) 10
b) 8
c) 9
d) 8.3
e) 8.2

67

8) Let p be the proportion of smokers in a random group of 10 people. Then p

- a) is a qualitative random-variable
- b) is not a random variable

4

- c) is a continuous random variable
- d) is a discrete random variable
- e) may have any value between 0 and 1 (including 0 and 1)

Unive Math	rsity of Jordan ematics-Department		Ken	•	•
Drinoi	ples of Statistics 0301	131			
First E	Exam/ 18/03/2009 5-6				
	الوقد	المدرس:	الرقم الجامعي:		الأسم:
1.	The following sample	presents the grades	of 10 student:		· · ·
	Class Frequency	-			· ·
	1-5 2	-			
	11-15 2	1			
	16-20 1				
	The variance is		· · ·		
÷	a. 20.21 ((b. 21.11)	c. 19	<mark>d.</mark> 22	
2.	Only one of the follo	wing statements is co	orrect:		
· .	a. $P(A \cap \overline{B}) \leq P(A)$	$\cap B$), for any two ev	vents A, B in Ω .		
•	b. If the observation	ns are skewed to the	right then the mean is sm	aller than the mode.	
•.	c. For some data, it	$(Q_1 = 32 \text{ and the rang})$	ge is 40, then Q_3 could be	: 74	· .
6	d. If the variance of	f a sample data is zer	ro then the range of this d	ata is zero.	
_ `3 .	If we roll a die twice,	, the probability that	the sum of the two numb	ers appear is smaller than	17 and the first
	number is odd is		10/07		
	a. 10/36	b. 11/36	c. 12/36	(a. 9/36)	
4.	The 30th percentile c	f the following data:	: 5, 9, 9, 2, 7, 6, 11, 7, 1s	A 5	
<i>с</i>	$\begin{array}{c} \mathbf{a}, \mathbf{b}, \mathbf{c} \\ \mathbf{b}, \mathbf{c}, \mathbf{c}, \mathbf{c} \\ \mathbf{c}, \mathbf$		C. J.J.	6 than the number of stu	dente with grad
).	If the grades of 400 s	tudents nave mean 7 61 79) is at most	v and standard deviation	o, mon me number of stu	idents with grad
	a 178	b. 222	c. 170	d. 230	
6	For a given data: O.	=28. O_{a} =40. and O_{a} =	=50. If we multiply each	observation by - 3, then v	ve add 10, the n
	O-becomes	, (2, (3			,
· · ·	3 -74	b −94	. c. −160	d140	
7	In tos if the weights	of male students are	bell-shaped with mean 7	0 and-variance 25. then	the weight above
_	which there are 16%	of the students is	, our orinbed (the mount)		
	a. 80	b. 82	c. 85	(d. 75)	
	· · · ·	н Н	· · · ·		
0.77					
say					
8	. In a given sample of	10 students, the grad	les have mean 20 and var	iance 16, if we change a	grade from 20 i
			$1 \left(\sum_{i=2}^{n} \right)^{i}$		
	30. Find the sum of t	ne squares of the new	w data $\left[\sum_{n \in W} x_i^{-} \right]$.		
		-	Luca /		
	•				
			-	:	

Zx1 = 4644

9. Let A and \overline{B} be two events in the sample space Ω . If P(A) = 0.7, $P(A \cap \overline{B}) = 0.4$, and $P(\overline{A} \cap \overline{B}) = 0.2$. Find P(B). $\chi = 79.5$ H f f such that $\chi \geq 1$

10	Consider	the	following frequency table:
10.	Consider	ιιι¢	Tomowing nequency table.

Grade	Number of
	Students
1-10	20
11-20	40
21-30	30
31-40	10

Find the number of students with grades greater than 27.

P(0)=0.4

وقت المحاضره

الرقم الجامعي:

0301131 Principles of Statistics

Midterm test

Summer 2007/2008

$$(arr (x_{1},y) = \int_{Y(x_{1},y)} (x_{1},y) d(x_{1},y) d(x_{1},y)$$

.

