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Molecular Shape 

 

 

AX2      Linear 

 

 

AX3  

Trigonal Planar 

(e.g., BCl3) 

All bond angles 120 

 

 

AX2E     Bent 

(e.g., SO2) 

Bond <120 
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10.1 Valence-Shell Electron-Pair Repulsion (VSEPR) Model 
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AX4      Tetrahedral 
(e.g., CH4) 

All bond angles 

109.5 

 
 

AX3E     

Trigonal pyramidal 
(e.g., NH3) 

Bond angle  

less than 109.5 
 

 

AX2E2      bent 
(e.g., H2O) 

Bond angle  

less than109.5 
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AX5     

Trigonal bipyramid 
(e.g., PF5) 

axial-equatorial bond 

angles 90 

eq-eq 120 

ax-ax 180 
 

 

AX4E      

Distorted Tetrahedron 

or Seesaw 
(e.g., SF4) 

ax-eq bond angles < 90 

ax-ax 180 
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AX3E2      T-shape 

(e.g., ClF3) 

Bond angles 90 

 

 

 

 

 

AX2E3       Linear 

(e.g., I3
–) 

Bond angles 180 
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Octahedral 

(e.g., SF6) 
Bond angles 
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Square planar 

(e.g., XeF4) 
Bond angles  
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Summary of Molecular  

Geometries 

 The direction in space of 

the bonding pairs gives 

the molecular geometry 

 VSEPR is based on 

minimizing electron 

repulsion in the molecule  
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 Bond Angles and the Effect of Lone Pairs 

 A lone pair require 

more space than a 

bonding pair. 

 Multiple bonds 

require more space 

than single bonds 

because of the 

greater number of 

electrons. 
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(Q) Predict the geometry of the following molecules or ions, using   

       the VSEPR method: 

a. BeCl2  b. NO2
–  c. SiCl4 d. ClO3

– e. OF2  

f.    TeCl4  g. ICl3  

 Applying the VSEPR Model to Larger Molecules 
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10.2 Dipole Moment and Molecular Geometry 

Alignment of polar molecules by an electric field 

 dipole moment is a quantitative measure of the degree of 

charge separation in a molecule and is therefore an indicator of 

the polarity of the molecule 

q = positive charge  

–q= negative charge  

d = distance 

10.43 AsF3 has a dipole moment of 2.59 D. Which of the following 

geometries are possible: trigonal planar, trigonal pyramidal, or T-

shaped? 
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 dipole moment of HCl is 1.08 D.  

 SI units: coulomb x meter (C∙m) 

 1 D = 3.34 x 10–30 C∙m 

bond dipole 
 

 (linear, trigonal planar, and tetrahedral) give molecules 

     of zero dipole moment; that is, the molecules are nonpolar 
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Exercise 10.4 Which of the following would be expected to 

have a dipole moment of zero? Explain  

a. SOCl2  b. SiF4   c. OF2 

(Q) Explain why the dipole moment of NF3 = 0.2 D, while that of   

      NH3 =1.47 D 

 Effect of Polarity on Molecular Properties 

Dipole moment:  1.9 D         0 D 

B.P (°C)   60.2        48.5  
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10.3 Valence Bond Theory 

 Basic Theory 

A bond forms between two atoms when the following conditions 

are met: 

1. The orbitals containing the electrons overlap. 

2. The sum of the electrons in both orbitals is no more than two. 

  H + H  H2 

1s1   1s1  
 Total 2e in the newly formed H2 orbital  

   

He + He  He2 (does not occur) 

1s2   1s2  
 Total 4e (XXXXX) 

 X 
 The strength of bonding depends on orbital overlap.  

 To obtain maximum overlap, orbitals other than s bond only in 

given directions.  
x 

 Bonding in HCl 

H: 1s1    Cl:1s22s22p63s23p5 
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 Hybrid Orbitals 

 Bonding in CH4 

 Experiment shows that the 

four C-H bonds in CH4 are 

identical. This implies that the 

carbon orbitals involved in 

bonding are also equivalent. 

  Hybrid orbitals are used 

promotion 

 The number of hybrid orbitals formed always equals the number 

of atomic orbitals used. 
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How to figure out the hybridization 

via Lewis structures. 
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10.4 Description of Multiple Bonding 
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Bonding in ethylene H2C=CH2 
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Bonding in acetylene 



19 

(Q) Describe the bonding on a given N atom in dinitrogen 

difluoride, N2F2, using valence bond theory. 
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HN=NH 10.54 10.55      HCN 

 Isomers are compounds of the same molecular formula but 

with different arrangements of the atoms. 
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 Lack of geometric isomers in 1,2-dichloroethane 

 cis and trans isomers of N2F2 
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10.5 Principles of Molecular Orbital Theory 

Bonding and Antibonding Orbitals 

 Molecular orbitals that are concentrated in regions between nuclei are called 

bonding orbitals. 

 Molecular orbitals having zero values in the region between two nuclei and 

therefore concentrated in other regions are called antibonding orbitals 

 Formation of bonding and antibonding orbitals from 1s orbitals of hydrogen 

atoms. When the two 1s orbitals overlap, they can either add to give a 

bonding molecular orbital or subtract to give an antibonding molecular 

orbital. 

σ1s 

σ*1s 
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Relative energies of the 1s orbital of the H atom and the σ1s and σ*1s molecular 

orbitals of H2. Arrows denote occupation of the s1s orbital by electrons in the 

ground state of H2. 

The corresponding electron 

configuration is: (σ1s)
2 

Excited state of H2: 
The corresponding electron 

configuration is: (σ1s)
1 (σ*1s)

1 

 Why He2 is not a stable molecule? 

The corresponding electron 

configuration is: (σ1s)
2 (σ*1s)

2 
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 Bond Order 

 For H2, which has two bonding 

electrons, 

 For He2, which has two bonding and two antibonding electrons  

 For H2
+ = ½ (1-0) = 1/2  

 For H2
- = ½ (2-1) = 1/2   

 For He2
+ = ½ (2-1) = ½ 

 For He2
2+ = ½ (2-0) = 1 
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 The ground state electron configuration of Li2: 

 The (σ1s)
2(σ*1s)

2 part of the 

configuration is often abbreviated KK 

(which denotes the K shells, or inner 

shells, of the two atoms). 

 In calculating bond order, we can 

ignore KK (it includes two bonding 

and two antibonding electrons). 

 We can write: B.O of Li2
 = ½ (2-0) = 1 

 Or B.O of Li2
 = ½ (4-2) = 1 

 The ground state electron configuration of Be2: 

 We can write: B.O of Be2
 = ½ (2-2) = 0 

 Or B.O of Li2
 = ½ (4-4) = 0 

 For Be2
+ = ½ (2-1) = ½ 

 For Be2
2+ = ½ (2-0) = 1 
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 Factors That Determine Orbital Interaction 

 The strength of the interaction between two atomic orbitals to 

form molecular orbitals is determined by two factors: 

 

(1) the energy difference between the interacting orbitals and  

(2) the magnitude of their overlap.  

 

 For the interaction to be strong, the energies of the two orbitals 

must be approximately equal and the overlap must be large. 


