THE UNIVERSITY OF JORDAN

PHYSICS DEPARTMENT

PH	VSICS	105	(2nd	EXAM)	

SEMESTER (Nov. 29th ,2016)

Student's Name (Arabic):		Registration #	a stitoe
Lecturer's Name:	/ 68 250	Section #	6) 250 1
$g = 9.8 \text{ m/s}^2 \cdot \rho_{water} = 1000 \text{ kg/m}^3$	$P_0 = 1.013 \times 10^5 \text{ Pa}, \rho_{blo}$	$_{od} = 1050 \text{kg/m}^3$	
Q1) A boy lifts a 4 kg mass vertical done by the boy is	ly upwards a distance of	2m at constant speed. The	work (in J)
a) 78.4 b) 19.6	c) 39.2	d) -19.2	e) -78.4
 Q2) A stone is thrown vertically upward a) The sum of the kinetic and pot b) As the stone rises the potential c) As the stone descends the kine d). The total mechanical energy is e) The change in the potential energy is e) The change in the potential energy is e) A skier slides down a 30° inclined initial velocity of 6 m/s and slides down kinetic friction between the ice and his sbottom of the hill. 	ential energies is zero. energy decreases. tic energy decreases. conserved. ergy equals the change in the path as shown in the figure. the hill a distance of 20 m.	e kinetic energy. He starts with an If the coefficient of	OIO Bron the Six of Color of C
199			30°
a) 15.7 b) 17.2	c) 16.8	d) 13.5	e) 8.2
Q4) The average power output of a 60 - minutes is:	kg running athlete is 400 V	V. The work (in k J) that he d	oes in 5
a) 60.0 b) 120	c) 0	d) 1.5 e) 90	D POS (b
Q5) The figure shows a see – saw of middle at point O. A 20 – kg boy sitt at point B. How far from point O (in that the see –saw is in static equilibr	s at point A and a 30 kg b m) should a 15 kg child	ooy sits A	0 P
a) 2 to the right of O d) 1.3 to the right of O	b) 2 to the left of O e) at point O	c) 1.3 to the	eft of O
Q6) The figure shows the forearm mode exerted by the biceps muscle. The arm r W = 12 N. If the forearm carries a weigh keep the forearm in static equilibrium in	otates about point O at the out W1 = 15 N, calculate the	lbow joint. The weight of th	e forearm is
a) 34 b) 106	c) 20	0 0 1 00 1 10	cm aosesaO
d) 12		0	A STATE OF THE PROPERTY OF T
		5 cm	20 cm

Q7) In the figure, the weight of the uniform beam W = 500 N, and its length l = 8 m. A massless cable holds the beam in static equilibrium at an angle of 45° with the x-axis. The horizontal component of the hinge force (in N) acting at the joint (point O) is: a) 250 b) 352 c) 250 d) 500 e) 707 Q8) A 60 - kg man just floats in water with all of his body below the water surface. What is his volume (in m³)? a) 1.2 b) 0.08 c) 0.06 d) 0.6 e) 1.0 Q9) A blood vessel of radius r splits into three vessels, each of radius r/4. If the velocity in the larger vessel is v, then the velocity in each of the smaller vessels is a) 3 v/16 d) 16 v/3 Q10) The figure shows a long evacuated tube with its open lower end immersed in water. The water tank is open to the atmosphere. The maximum height h (in m) the water can rise in the evacuated tube is: a) 0.76 b) 10.3 c) 9.1 d) 3 e) 6.6 Q11) A 6.0 cm radius horizontal pipe gradually narrows down to 5.0 cm. If $P_1 = 30 \text{ kPa}$ and $V_2 = 6 \text{ m/s}$, then the value of the pressure P₂ (in kPa) is: Water Flow

Q12) An object of density ρ is placed in a fluid of density ρ_F . Assume the only forces acting on the object are its weight and the buoyant force. Which of the following statements is correct?

a) The buoyant force depends on the density of the object.

- b) The buoyant force is due to the increase in the fluid pressure with depth below the fluid surface.
- c) If $\rho_F > \rho$, the object sinks.

b) 63.5

e) 24.2

a) 39.3

d) 209.6

- d) If $\rho_F < \rho$, the object floats.
- e) None of the above is correct.

List your final answers in this table. Only the answer in this table will be graded

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Final Answer	A	D	D	B	B	E	C	C	D	B	C	B

A

P1

 P_2

Physics (105)/2" exam Nov. 29/2016

(92) The total mechanical energy is conserved. (2)

Q3] #mg is a conservative force #N is a non-conserting have force but closs NO work. # fx is a non-conservative force and does negative work. distance moved down the incline $\Delta k + \Delta U = W_{nc} + \Delta U$ 1 m (vf - v2) = mg d sin30 = (fk)(d) cos 180° = ph (ef2-v;2) - phgdx==-Hk(phgcos30)(d)

4 = v; + gd - Mgd[3 > v = 13.5 m/s (

Remember $\cos 30 = \frac{13}{2}$

= 400 × 5×60 = 120,000 94] P=W=Pt = 120 KJ [b]

209 159 15 kg child should sit 95/ on the same side as the lighter boy 1.e on the left hand side of o 20g(3) + 15g x - 30g(3) = 03 x = 2 m (to the left of 0) (b)

Position = $\rho = 4 \text{ thosphoric pressure}$ $S_{\omega} gh = 1.013 \times 10^{5} \Rightarrow h = \frac{1.013 \times 10^{5}}{(9.8) \times 10^{3}} = 10.3 \text{ m}$

 $\begin{array}{lll}
\left(\begin{array}{c}
A_{1}U_{1} = A_{2}U_{2} \\
A_{1}U_{1} = A_{2}U_{2}
\end{array}\right) & \left(\begin{array}{c}
C_{1} = b \text{ cm} \\
C_{2} = 5 \text{ cm} \\
C_{2} = 5 \text{ cm}
\end{array}\right) \\
\left(\begin{array}{c}
C_{1} = \left(\begin{array}{c} c \cdot o.6 \\ 0.06 \end{array}\right)^{2} \left(\begin{array}{c} c \end{array}\right) = 7 \left(\left(0.05 \right)^{2} U_{2}
\end{array}\right) \\
\left(\begin{array}{c}
C_{1} = \left(\begin{array}{c} c \cdot o.6 \\ 0.06 \end{array}\right)^{2} \left(\begin{array}{c} c \end{array}\right) = 4.167, \text{ m/s} \\
P_{1} = 30 \text{ k/a}
\end{array}\right) \\
\left(\begin{array}{c}
C_{1} = C_{2} + \frac{1}{2} P U_{2}
\end{array}\right) = \frac{1}{30} \times 10^{3} + \frac{1}{2} \times 1000 \left(\begin{array}{c} C_{1} - U_{2} \end{array}\right) \\
\left(\begin{array}{c}
C_{2} = C_{1} + \frac{1}{2} P \left(\begin{array}{c} C_{1} - U_{2} \end{array}\right) = 30 \times 10^{3} + \frac{1}{2} \times 1000 \left(\begin{array}{c} C_{1} - U_{2} \end{array}\right) \\
= 20.7 \text{ kPa}
\end{array}\right)$

912] (6)